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“Twenty years from now you will be more disappointed by the things that you didn’t do

than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor.

Catch the trade winds in your sails. Explore. Dream. Discover.”

Mark Twain



Abstract

Plasma processes can present difficult control challenges due to time-varying dynamics

and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the

use of mathematical models with accessible measurements from an operating process to

estimate variables of interest. This thesis addresses the challenge of virtual metrology

for plasma processes, with a particular focus on semiconductor plasma etch.

Introductory material covering the essentials of plasma physics, plasma etching, plasma

measurement techniques, and black-box modelling techniques is first presented for read-

ers not familiar with these subjects. A comprehensive literature review is then completed

to detail the state of the art in modelling and VM research for plasma etch processes.

To demonstrate the versatility of VM, a temperature monitoring system utilising a

state-space model and Luenberger observer is designed for the variable specific impulse

magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The

temperature monitoring system uses optical emission spectroscopy (OES) measurements

from the VASIMR engine plasma to correct temperature estimates in the presence of

modelling error and inaccurate initial conditions. Temperature estimates within 2% of

the real values are achieved using this scheme.

An extensive examination of the implementation of a wafer-to-wafer VM scheme to es-

timate plasma etch rate for an industrial plasma etch process is presented. The VM

models estimate etch rate using measurements from the processing tool and a plasma

impedance monitor (PIM). A selection of modelling techniques are considered for VM

modelling, and Gaussian process regression (GPR) is applied for the first time for VM

of plasma etch rate. Models with global and local scope are compared, and modelling

schemes that attempt to cater for the etch process dynamics are proposed. GPR-based

windowed models produce the most accurate estimates, achieving mean absolute per-

centage errors (MAPEs) of approximately 1.15%. The consistency of the results pre-

sented suggests that this level of accuracy represents the best accuracy achievable for

the plasma etch system at the current frequency of metrology.

Finally, a real-time VM and model predictive control (MPC) scheme for control of

plasma electron density in an industrial etch chamber is designed and tested. The VM

scheme uses PIM measurements to estimate electron density in real time. A predictive

functional control (PFC) scheme is implemented to cater for a time delay in the VM

system. The controller achieves time constants of less than one second, no overshoot,

and excellent disturbance rejection properties. The PFC scheme is further expanded by

adapting the internal model in the controller in real time in response to changes in the

process operating point.
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Chapter 1

Introduction

1.1 Background and motivation

Plasma, often termed the fourth state of matter, is an ionised gas consisting of posi-

tively and negatively charged particles with approximately equal charge densities [1].

Interestingly, plasma makes up as much as 99% of the mass in the universe, both by

mass and by volume. Since its first discovery in 1879 by Sir William Crookes [2], plasma

has found applications in many aspects of modern life, with applications as far reach-

ing as plasma-arc welding, waste disposal, visual displays, propulsion systems, medical

sterilisation techniques, fluorescent lamps, and semiconductor manufacture.

Control of plasma-based processes is difficult in general because of its non-linear

behaviour and sensitivity to disturbances. In many cases, measurements required for

accurate control are difficult to obtain due to the harsh conditions within plasmas, and

a requirement to avoid perturbation of plasmas used in production.

Virtual metrology involves estimation of variables from a process that are not mea-

sured directly using surrogate measurements taken from the process. Virtual metrology

(VM) is achieved using mathematical models that relate the in-situ measurements from

the process to the variables of interest that are inaccessible at the time of processing.

While VM is most widely associated with the semiconductor manufacturing industry,

the idea of VM has strong ties to state estimation and observer design in control the-

ory. VM has the potential to greatly improve the performance of semiconductor plasma

processes by increasing the availability and response-time of process feedback variables

for control and monitoring purposes. VM could also be used to replace expensive sensor

equipment.
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In this thesis, the application of virtual metrology to plasma processes is examined,

with a particular focus on plasma etch, a semiconductor manufacturing process. As a

demonstrative case study, the application of VM to a plasma-based space propulsion

system is also examined. In this section, a short discussion on the motivation for both

applications is provided, with emphasis on plasma etch as the main subject area of this

thesis.

1.1.1 VM for VASIMR

Propulsion for space travel is predominantly achieved through the use of chemical com-

bustion rockets that burn a fuel in an oxidising agent to produce thrust in space with

a controlled explosion. The fuel efficiency of such engines is relatively low, and for

interplanetary flights, chemical rockets present limitations in terms of the costs of trans-

porting vast quantities of fuel into orbit, and the maximum velocities achievable with

restricted fuel supplies. As space exploration turns towards more ambitious plans for

interplanetary human flight, alternative technologies for space propulsion are being de-

veloped to enable faster and more efficient space travel.

The variable specific impulse magnetoplasma rocket (VASIMR r) engine is a space

propulsion engine being developed by the Ad-Astra Rocket Company. The VASIMR

engine produces thrust by accelerating a gas propellant (typically argon) in plasma form,

using large magnetic fields produced by an array of electromagnets. The production

of thrust in this manner uses much less fuel than conventional chemical combustion

rockets, and has the potential to revolutionise space travel by greatly increasing the

achievable velocities for spacecraft with smaller fuel demands. VASIMR engines also

have applications in satellite repositioning and lunar cargo transport. The VASIMR

engine is currently in a prototype phase, with the first flight-ready engine to be tested

on the international space station in the coming decade.

The VASIMR engine produces a great deal of excess heat during plasma production.

Internal engine temperatures can quickly reach levels beyond the allowable limits of the

engine’s components. Monitoring of the internal engine temperatures is made difficult

by the extreme environment in the rocket plasma, which can reach over one million

degrees centigrade [3]. In prototype systems, the temperatures are measured using

thermocouples attached to the engine, but such systems are not feasible for final flight-

ready engines.

Virtual metrology provides a viable option for non-invasive estimation of internal

engine temperatures. The plasma optical emissions are easily measured during plasma
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production, and the optical emission can be related to the temperatures of interest

through the use of VM models. Successful implementation of a reliable VM scheme

reduces the need for invasive temperature measurements, and can be used at later de-

velopmental stages for feed-back control of active cooling systems. In this thesis, the

application of VM techniques to the VASIMR engine is examined as a case study.

1.1.2 VM for semiconductor etch

Semiconductor manufacturing is difficult. The technology and engineering behind the

microelectronics that now permeate almost every aspect of modern life is astonishingly

complex. The proliferation of microprocessors has been made possible by tremendous

advancements in semiconductor manufacturing techniques in recent decades, resulting

in the minimisation of both the cost and size of electronic components. The trend of

innovation famously follows “Moore’s Law”, first articulated in 1965 [4] by the co-founder

of Intel corporation, Gordon E. Moore, who predicted that “The number of transistors

that can be placed inexpensively on an integrated circuit has doubled approximately

every two years.” The exponential increase in microprocessor capabilities predicted by

Moore has become both a benchmark and a target for semiconductor manufacturers

worldwide, with current industrial development working towards a 22 nm node [5] (the

dimension size of a manufacturing “node” is defined as half the distance between cells

in a dynamic random access memory (DRAM) chip).

The semiconductor manufacturing cycle typically comprises over 350 different pro-

cess steps to build nanometer scale circuits on silicon wafers. In modern semiconductor

fabrication facilities, or fabs, wafers are typically 300 mm in diameter and processed

in batches, or lots, of up to 25 wafers. The main manufacturing steps are deposition,

lithography, etch, ion implantation, and planarisation. In deposition, layers of material

are deposited on the wafer surface, usually using thermal processes. In lithography, pat-

terns of photoresistive mask are transferred to the wafer surface. During etch, reactant

gases in plasma form remove surface material that is not covered by the photoresistive

mask. During ion implantation, the electrical properties of areas of the wafer surface

are changed through semiconductor doping with different elements. Finally, in planari-

sation, wafers surfaces are smoothed with a combination of chemical and mechanical

forces. Through repetitive applications of these five procedures, along with some other

processes, elements of logic and memory circuits are constructed on silicon wafers [6].

Interdependencies exist between each of the processes carried out. Processing errors

at one manufacturing tool invariably have knock-on effects that can reduce device yield.

Such errors in manufacturing can cost companies hundreds of thousands of euro per year
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due to the high-value nature of the product material. As such, process monitoring and

control for every process in the fabrication environment is of paramount importance.

While wafers that are processed incorrectly during some processes, for example,

lithography, can sometimes be stripped and reworked, such rework is invariably not pos-

sible for incorrectly etched wafers [7]. As a result, ensuring the etch process is operating

within specifications is important. Measurement of plasma etch performance during

processing is difficult due to the harsh environment within plasma etch chambers and,

typically, metrology tools measure etch performance downstream from the plasma pro-

duction tools. Non-invasive metrology techniques are desirable during the etch process

to avoid perturbing the etching plasma and affecting the final process outcome on the

wafer surface.

Etch processing is conducted within specialised etch chambers. Process input vari-

ables to the chambers are typically well controlled variables such as chamber pressures,

component temperatures, and gas flow rates, specified by set points. In general, the

required etch process input variables for each product are developed through extensive

experimentation during the product development stage, early in a product’s life cycle.

Once decided upon, the etch process input variables are compiled into recipes that are

distributed to different fabs for production. The etch recipes remain relatively fixed and,

historically, the recipes were applied to product wafers in each fab environment in an

open-loop manner [8], where repeatable results are assumed for each wafer processed.

This open-loop application of process recipes is still used for some etch processes.

The time-varying dynamics of plasma etch processes causes difficulties in maintain-

ing consistent etch results for processes using constant process recipes. Etch processes

exhibit process drift and unpredictable shifts in behaviour, causing variance in the etch

results for each wafer. Manufacturing processes in the semiconductor industry are pre-

dominantly managed using statistical process control (SPC), where variables measured

in-situ during each process (process variables), or variables concerning the result of each

process (process output variables) are monitored for deviations that indicate erroneous

operation. Multi-variate statistics are also employed to allow multiple process variables

from each process to be monitored using SPC [9].

Advanced process control (APC) is the next step in factory automation, which, as

of yet, is not fully adopted by semiconductor factories worldwide. The ultimate aim of

APC is to improve device yield, that is the number of “good” chips or die per wafer

processed. APC is considered [6] to include four components,

• fault detection,
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• fault classification,

• fault prognosis, and

• process control.

These tasks are achieved through the use of information about the material to be

processed, measured data, and the desired results. APC includes lot-to-lot, wafer-to-

wafer, and within wafer real-time control and has the capability to improve performance,

yield, and throughput within manufacturing environments [10]. Ideally, measurements

of important process variables and process output variables during every wafer processed

are available to implement APC.

The implementation of APC for plasma etch in industry has broadly been restricted

to lot-to-lot control [11], rather than wafer-to-wafer or real-time control as a result of two

main difficulties. Firstly, measurements of important process output variables typically

involve a prohibitively large time overhead, meaning that every wafer processed cannot

be measured. Secondly, there is typically a considerable delay (several hours or even

days) between the etch of a product wafer and the availability of metrology on the

etch process output variables, i.e. a metrology delay. As a result, corrections to the

etch process recipe, if required, cannot be implemented in real-time during the etch

process or even immediately after each wafer is processed. If an etch system operates

out of control, several wafers or lots can be processed erroneously before the problem is

detected, potentially leading to multiple wafer scraps. With shrinking device dimensions,

process control limits are becoming more stringent, and deviations in the etch process

performance can more easily destroy valuable product wafers. Stricter control of the

etch process is required for the continued advancement of the products being processed.

One potential solution to the problem of infrequent measurement is that of integrated

metrology, that is the addition of metrology tools into each processing tool in the fab,

that allow frequent measurements of product material to be taken during or after a

processing step [12, 13]. However, due to a prohibitive set up cost, a lack of cooperation

between semiconductor companies and tool manufacturers, and increased cycle time,

large-scale adoption of integrated metrology has not yet occurred in the industry.

The second potential solution is virtual metrology (VM) which, as mentioned ear-

lier in this section, is the use of in-situ measurements of process variables along with

mathematical models of the process to estimate or predict process output variables of

interest. A typical VM implementation for plasma etch is depicted in Figure 1.1. There

are many advantages to VM in semiconductor manufacturing [14], including
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• Reduction in wafer scraps by faster process monitoring: with increased numbers of

immediately available “virtual” measurements of process output variables, errors

in processing can be detected in a timely fashion, preventing further wafers from

being processed incorrectly.

• Improved process control: VM estimates, available during or after each processed

wafer, overcome the low frequency of measurements taken in semiconductor pro-

cesses, enabling the adjustment of process input variables on a real-time or per

wafer basis. Different control schemes are possible, as depicted in Figure 1.2:

Plasma variables such as species concentrations and temperatures (see Chapter 2)

can be controlled in real-time, etch process variables such as etch rate (the rate

of material removal from the wafer surface) can be controlled in real-time or on

a wafer-to-wafer basis, and process output variables such as etch depth can be

controlled on a wafer-to-wafer or lot-to-lot basis.

• Increased throughput: When dependable VM schemes are implemented, the fre-

quency of actual metrology operations could be reduced, simultaneously reducing

the production cycle time and metrology costs, increasing fab efficiency.

Figure 1.1: Virtual metrology principle. Estimates of process output variables of
interest are made using process variables and mathematical models, or virtual metrology
models. Similarly, plasma or etch variables can be estimated using virtual metrology

models.

The model input data required for VM is, in some cases, already being collected from

processes in many fabs for off-line analysis of faults and SPC. However, the successful

implementation of VM for any process depends on the construction of a reliable process

model. In the case of plasma etch, such a model is difficult to create and maintain [15].

The inherent complexities of the etch process means that modelling from first-principals

is extremely complicated, and typically, such models cannot be computed in real time.

Hence, many researchers rely on empirical black-box modelling techniques using data

sets collected from either specially designed experiments or production wafers. A con-

siderable amount of research has been completed in the area of plasma etch modelling

for VM [8].
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Figure 1.2: Virtual metrology applications for plasma etch.

Successful implementation of VM for all semiconductor manufacturing production

processes has the potential to revolutionise the semiconductor production process, en-

abling APC implementation on a fab-wide basis. Such implementation is seen as essential

as the semiconductor industry moves simultaneously towards smaller critical dimensions

and larger diameter wafers [16, 17]; the international technology roadmap for semicon-

ductors (ITRS) points towards production at the 16 nm node and the introduction of 450

mm diameter wafers in the coming decade [5]. As a result, VM has been highlighted

as a topic of interest by a number of research consortia, symposia, and funded research

collaborations as a key area for development in the semiconductor industry. Examples

of research initiatives with VM component streams include the global semiconductor

manufacturing technology (SEMATECH) consortium, the IMPROVE research project

in Europe, the KAP (knowledge, awareness, prediction) research project also in Europe,

and the Irish centre for manufacturing research (ICMR) competence center in Ireland.

VM is now a mainstream topic at annual advanced equipment control / advanced process

control (AEC/APC) symposia in Europe, the U.S., and Asia. Research on VM topics

is also published often at the annual advanced semiconductor manufacturing conference

(ASMC).
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1.2 Objectives

The main objective of this thesis is to examine the application of VM techniques to

industrial plasma processes, with a particular focus on semiconductor plasma etch. This

objective is achieved in four main sections.

Firstly, the thesis aims to comprehensively describe the present state of the art in

virtual metrology in plasma etch through the examination of published literature.

Secondly, the thesis aims to demonstrate the versatility of VM techniques for plasma

applications through the development of a VM system for temperature monitoring pur-

poses on the space propulsion engine, the VASIMR engine. This particular case study

aims to demonstrate how VM is not limited to the semiconductor industry, for which it

is most commonly known. The VM system aims to provide accurate real-time estimates

of engine temperatures to operators.

Thirdly, for semiconductor etch, the thesis aims to develop VM models for a pro-

duction plasma etch process. The research aims to develop VM models that achieve the

maximum etch rate estimation accuracy possible. The data set used is representative

of typical industrial data, consisting of measurements of process and output variables

from an industrial etch process. The aim of the VM system is to estimate etch rate on a

wafer-by-wafer basis for the sake of process monitoring, and potentially for implementa-

tion of a wafer-to-wafer control system. This research implements the VM block in the

etch process control loop of Figure 1.2.

Finally, the thesis also aims to investigate the application of real-time VM techniques

for control of the plasma electron density in an industrial etch chamber, implementing

the real-time plasma variable control loop depicted in Figure 1.2. The aim of this sec-

tion of the research is to investigate the feasibility of using VM to eventually facilitate

specification of process recipes in terms of plasma variables, rather than process input

set points. During real-time control, changes to the process input variables are made

in real time to maintain consistent plasma electron density even the presence of dis-

turbances representative of maintenance events, hence producing more predictable etch

performances.

1.3 Contributions of this thesis

This thesis claims the following original contributions:
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1. A comprehensive literature review of the state of the art in virtual metrology

applied to semiconductor plasma etch is conducted. The literature review examines

the modelling techniques and applications of VM used by different researchers in

academia and industry. The extensive literature is divided into logical subsections

for ease of reference.

2. In a case study contained in this research, the novel use of optical emission spec-

troscopy (OES) data to accurately estimate a spatial temperature distribution in

a plasma rocket engine is detailed. A linear state space model and Luenberger

estimator is used to achieve this goal.

3. A comprehensive investigation into the maximum achievable accuracy of global

and local VM models for a modestly sampled plasma etch system is carried out.

The performance of a global VM modelling scheme is compared to three different

local VM modelling schemes to determine the best modelling approach to cater

for the peculiarities of plasma etch process dynamics.

4. A novel weighting system based on the maintenance history of the plasma etch

chamber is proposed for windowed partial least squares (PLS) regression VM mod-

els. The suggested weighting scheme is found to increase the accuracy of the etch

rate estimates compared to non-weighted models.

5. This thesis details the first application of Gaussian process regression (GPR) mod-

els to semiconductor etch data, and finds GPR models to generate more accurate

estimates of plasma etch rate for unseen data compared to the other modelling

techniques investigated.

6. A novel real-time VM and model-based predictive control scheme is implemented

to achieve non-invasive real-time control of electron density in a production plasma

etch chamber. To the best of the authors knowledge, this research details the first

application of virtual metrology for real-time control of plasma electron density in

an industrial etch system.

7. The research reports the first application of predictive functional control (PFC),

to an industrial plasma etch chamber.
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1.4.2 Internal technical reports
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1.5 Thesis layout

The thesis begins in Chapter 2 by providing background information on plasma physics

and plasma etch processing so that readers unfamiliar with these core topics can fa-

miliarise themselves with key principals and terminology that are encountered in each

chapter thereafter. Explanations are provided at a relatively basic level for an audience

with a general scientific or engineering background.

Chapter 3 introduces the mathematical modelling techniques that are employed

throughout this thesis to perform VM. Explanations of the workings of each technique

are provided along with some discussion on the advantages and disadvantages of each.

The techniques described in Chapter 3 are used in Chapters 6 – 8 to perform VM, and

are referred to regularly when discussing related research in Chapter 4.

Chapter 4 contains a comprehensive literature review of the state of the art in VM

and modelling for plasma etch. Chapter 4 is included to provide background information

on existing work in the literature so that the reader can understand the context and

relevance of the research described in the thesis.
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Chapter 6 details the application of global models to an industrial plasma etch data

set. An in-depth discussion on the etch process studied is included to describe the

peculiarities of the data and to describe the main sources of variance in the data. The

VM techniques described in Chapter 3 are used to create the global models. Chapter 7

then details the development and application of three different local modelling schemes

to the same plasma etch data set. Each local modelling scheme is discussed in turn, and

the motivation for each is clearly provided.

Chapter 8 examines the development of a real-time VM and model predictive con-

trol system for plasma electron density in an industrial plasma processing chamber.

Because this chapter is the only chapter primarily concerned with the application of

control algorithms, a literature review on control research in plasma etch and an intro-

ductory discussion on the methods used for model predictive control are provided before

presentation of the results of the experiments.

Finally, Chapter 9 presents the general conclusions that can be drawn from the body

of research presented in the thesis and discusses potential future work arising from the

research.
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Chapter 2

Plasma and plasma etch

fundamentals

In this chapter, the basic principles of the plasma etch process are examined. An in-

troduction to the basic features and phenomena of plasma physics is provided along

with a broad overview of plasma processing technology and common diagnostic tools

encountered in the area of plasma etching. Plasma physics is a vast and complex area

of study, the complete details of which are beyond the scope of this thesis. For a more

complete examination, the interested reader is directed to the work by Lieberman and

Lichtenberg [18].

2.1 Basic plasma physics

2.1.1 What is a plasma?

Plasma, or “radiant matter” as it was first dubbed, was discovered by Sir William

Crookes in 1879 in a Crooke’s tube [2]. Joseph J. Thompson identified the nature of

the fluorescent “cathode rays” identified by Crookes in 1897 with his discovery of the

electron [19]. The ionised gases were first named “plasmas” by Irving Langmuir in 1928

[20], choosing the name as they reminded him of blood plasmas. Langmuir went on to

introduce the concepts of electron temperature and invent the Langmuir probe, a plasma

measurement tool still in use today (see Section 2.5.6).

Referred to as the fourth state of matter, plasma is an ionised gas consisting of

positively and negatively charged particles with approximately equal charge densities
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[1]. Plasma can be produced by heating a gas to such a temperature that the random

kinetic energy of the gaseous molecules exceeds the ionisation energy of the constituent

gases. At such temperatures, the atoms and molecules of the gas become ionised due

to collisions with other molecules leaving a large number of ions (atoms with at least

one of their electrons taken away, or with one extra electron) in a sea of freely moving

electrons.

Natural plasmas make up as much as 99% of the mass in the universe, both by

mass and by volume. Most stars, including the Sun, and a significant fraction of the

interstellar medium are made up of plasma. In the Earth’s atmosphere, examples of

natural plasmas include lightening and the aurora borealis. The ionosphere and the

magnetosphere are layers of plasma that surround the earth at altitudes above 80km.

Since plasmas contain many freely moving charged particles, they are highly responsive

to magnetic and electric fields. Man-made plasmas have become commonplace in society,

with applications as far reaching as plasma-arc welding, waste disposal, visual displays,

and fluorescent lamps, as mentioned in Chapter 1.

2.1.2 Degree of ionisation

The degree of ionisation of a given plasma describes the proportion of the gaseous

molecules that have been ionised, that is the proportion of molecules which have lost or

gained one or more electrons via energetic collisions with other particles. The degree of

ionisation is expressed in terms of the charged particle densities, ne ≈ ni particles / m3,

where ne is the number of electrons per cubed meter, or the electron density, and ni is

the ion density of the plasma. The degree of ionisation of a plasma is

αis =
ni

ni + nn
× 100% (2.1)

where nn is the density of neutral molecules. A gas may begin to exhibit plasma

behaviours with a degree of ionisation αis as little as 0.01 %. Note that the relationship

ne ≈ ni only holds for plasmas where the average charge state ν (an integer) of the ions

is one, otherwise ne = νni.

A source of energy is required to maintain the plasma, usually in the form of an

electric or a magnetic field from which charged particles gain energy. This energy appears

as kinetic energy for each particle, given by 1
2mv

2, where m is the mass of the particle,

and v is it’s speed. Because electrons have a much smaller mass than ions, but carry

the same magnitude of electric charge, electrons move at much faster speeds through
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the plasma since they absorb the same amount of energy from the applied electric or

magnetic field.

2.1.3 Ion and electron temperatures

Plasmas can be further classified into “hot” or “cold” plasmas, depending on the amount

of energy supplied to the constituent molecules. The degree of heating will be related

to the degree of ionisation observed. The relationship between the kinetic energy of a

particle in a gas, and its temperature, is described [21] by

1

2
mv2 =

3

2
kBT (2.2)

where v2 is the mean square speed of the particle, kB is Boltzmann’s constant, and

T is the temperature in Kelvin. It follows from Equation (2.2) that the mean square

speed is given by 3kBT/m. A more useful parameter is the mean speed v̄, which is not

simply equal to the square root of v2 (as ‘mean’ and ‘root mean square’ are defined

differently), but can be shown to have a value:

v̄ =

√
8kBT

πm
(2.3)

The definition of a mean speed implies that some molecules travel slower and some

molecules travel faster than v̄. In a plasma, each of the species that exists within it can

have their own temperatures, Ti, Te and Tn, for ion, electron and neutral temperatures

respectively. Temperature can essentially be viewed as a measure of the speed at which

the particles move through the plasma. Typically, a fluid or gas is in thermal equilibrium

such that Ti ≈ Te, and the atoms and molecules of the fluid have a Maxwellian (Gaussian)

velocity distribution f(v) as they move randomly [21]. f(v) is described by

f(v) = Ae
−( 1

2
mv2

kBT
)
, (2.4)

where A is a normalisation factor and the temperature T determines the ‘width’ of

the velocity distribution.

The plasmas found in stars are in thermal equilibrium. However, since the low-

pressure discharges used in plasma processing are electrically excited and relatively
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weakly ionised, the applied power preferentially energises the relatively low-mass elec-

trons, while the relatively heavy ions exchange energy through collisions with the neu-

tral gas particles. Hence Te � Ti for these plasmas. When expressed in Kelvin (K),

the electron temperature Te of low-pressure discharges can reach extremely high values,

e.g. 23000 K. However, since the heat capacity of the electrons is very small, the ex-

treme temperatures do not mean that the vessel containing the plasma will melt. Merely

the electrons will be moving at high speeds in the plasma. Ions, since they have lower

speeds, will have temperatures Ti only slightly above the ambient temperature, e.g. 500

K, in accordance with Equation (2.2).

2.1.4 Gas phase collisions

The processes that dominate the behaviour of a plasma are the random collisions that

occur between the constituent gas particles. It is through collisions with one another

that energy is transferred between ions, electrons and neutrals to maintain the Gaussian

distribution of energies described in Equation (2.4). Collisions in a gas or plasma can

be classified under two main headings:

• Collisions in which there is an interchange of kinetic energy only, similar to colliding

billiard balls. These are elastic collisions.

• Collisions in which the internal energies of the colliding particles are changed.

These are inelastic collisions.

In this context, internal energy changes refer to electronic excitation, ionisations,

dissociations, etc. Elastic collisions are the simpler of the two collision types, where

kinetic energy is conserved, and no new particles are formed. In contrast, inelastic

collisions are capable of creating and annihilating particles in the plasma.

Elastic collisions

For two masses of mass mi and mt, assuming that mt is initially stationary, and that

mi collides with velocity vi at angle θ to the line joining the centres of mi and mt at the

moment of collision (as depicted in Figure 2.1), an expression for the energy lost by the

moving particle mi to mass mt, EL [18] can be found

EL =
4mimt

(mi +mt)2
cos2 θ. (2.5)
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Figure 2.1: Two-mass elastic collision. Mass mi moving at speed vi collides with mt

at angle θ, assuming that mt is initially stationary.

This proportion of energy transferred has a maximum of cos2 θ when both masses

are equal (mi = mt). Energy is transferred evenly between two colliding particles of

equal mass. In cases where electrons strike molecules or atoms, the difference in mass

between the particles causes the speed of the electron to not be changed by much, but

its direction is. Molecules are largely unaffected by kinetic collisions with electrons. In

the case of a molecule with large mass striking a particle with much lower mass in a

head on collision, it can be shown [21] that the particle with low mass will travel away

from the collision at approximately twice the impact velocity.

The mean group velocity of electrons moving in the plasma under the influence of

an applied electric field are limited by elastic collisions with other particles. While the

elastic collisions described in Figure 2.1 apply to collisions involving neutral particals, the

forces acting between charged particles for elastic collisions are the strong electrostatic

Coulombic forces, determined from Coulomb’s Law,

F =
q1q2

4πεod2
, (2.6)

where q1 and q2 are the charges on each particle, εo is the permittivity of the medium,

and d is the distance between the particles. The Coulombic forces extend to relatively

large distances around charged particles and typically, Coulombic collisions result in

small-angle (< 10◦) scattering of particles where the charged particles effectively “swing”

around each other due to attractive or repulsive electrostatic forces acting at a distance
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(depending on the relative charges of the particles). However, the cumulative effect of

many small-angle collisions scatters particles by large angles (> 90◦) [18, 22].

Inelastic collisions

Ionisation Ionisation is a collision where one electron or more is knocked from or

attached to a stable atom or molecule to create an ion. This process is necessary to

maintain a plasma discharge. The main type of ionisation in a plasma discharge is

electron impact ionisation, where an energetic electron strikes an atom and removes an

electron from the atom.

e + A → 2e + A+

The two free electrons can now gain energy and cause further ionisation, maintaining

the discharge. An electron that causes ionisation must have enough energy to overcome

the ionisation energy of the atom or molecule with which it collides. The ionisation

energy is the energy required to remove the outermost electron in an atom or molecule

in its ground electronic state. Ionisation can occur as a result of a variety of energy

sources, including photo-ionisation (where molecules or atoms are ionised using the

energy from incident photons of light) or thermal activation (where molecules or atoms

become ionised after gaining energy from heating).

Excitation

During excitation, an electron in an atom gains enough energy to jump to a higher

energy level in the atom as a result of the collision. The existence of discrete energy

levels for electrons orbiting the atoms nucleus is described in the Bohr model of the atom

introduced in 1913 [23]. In general, excitation is a less energetic collision compared to

ionisation. Excitation occurs when the atom absorbs energy, and can be brought about

by particle collisions, photo excitation or thermal excitation. An excited atom is usually

indicated using an asterisk superscript (∗). The energy below which excitation will not

occur is known as the excitation energy which, as expected, is typically much less than

the ionisation energy.

e + A → e + A∗
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Relaxation

Relaxation is the opposite process to excitation. Relaxation is the movement of an

electron in an excited atom from a higher energy level to a lower one.

A∗ → A + hfph (photon)

In this movement, the excess energy of the electron is generally released in the form

of a photon as depicted in Figure 2.2. The energy of the photon corresponds to the

difference in energy between the two atomic levels between which the electron moves.

The frequency of the released photon is directly proportional to its energy, and is given

by

Eph = hfph =
hc

λph
(2.7)

where Ep is the energy of the released photon, h is Plank’s constant, c is the speed

of light, and fph and λph are the frequency and wavelength of the released photon

respectively. This phenomenon leads to the characteristic glow of plasma discharges,

and is used by optical emission spectroscopy (OES) (discussed later in Section 2.5.1) to

deduce the gaseous species that exist in a plasma.

Recombination

Recombination is the opposing process to ionisation whereby an electron and a positive

ion combine to form a neutral atom. However, to conserve energy and momentum, a

third body is often required for this collision to occur. This third body can be the wall

of the chamber, or a third, neutral, molecule.

e + A+ + A → A∗ + A

This is known as a three body collision. The probability of a gas atom being used as

a third party for recombination, over a wall, increases with pressure, considering that

the chamber walls are always present, but the number of atoms per cm3 increases with

pressure. Other, more unlikely, recombination processes that can occur are two-stage

recombination processes,
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(a) Neutral State

(b) Excitation (a) Relaxation and Emission

Energy

Nucleus

Electron

Electron Orbit

Photon 
Emission

Figure 2.2: Excitation and relaxation with photon emission. Photons are released
from atoms when electrons drop from higher to lower energy levels. The frequency of
the emitted photon is proportional to the energy difference between the original and
final electron energy levels. This diagram shows: (a) The atom in a neutral state where
all electrons are in the lowest orbits available. (b) The excitation process. Energy
is introduced to the atom from an outside source to excite electrons to higher energy
orbits. (c) Relaxation. Excited electrons fall from their unstable outer orbits and

release energy in the form of photons in the process.

e + A → A−

A− + A+ → A + A

and radiative recombination, whereby the excess energy from the collision process is

carried away with a photon.

e + A+ → A + hfph

Dissociation

Dissociation is a process whereby collisions of sufficient energy break apart a molecule

into its constituent atomic species. For example, an oxygen molecule could be broken

into two atoms of oxygen through electron impact dissociation. The energy needed

to achieve this, the dissociation threshold, depends on the strength of the chemical
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bond between the atoms. Dissociation may also be accompanied by ionisation. This

is the main process responsible for the creation of chemically active radicals in typical

production plasmas.

e + A2 → e + A + A

Electron attachment

During electron attachment, an electron attaches to an electronegative atom to form

a negative ion. The likelihood of atoms forming negative ions is determined by their

electron configuration. Atoms with spaces left in their outer shell will have a strong

affinity for electrons, whereas the noble gases, with full outer shells will not form negative

ions with electrons. A common and important electron attachment reaction used in

many industrial applications [22] is the dissociative attachment of SF6 to form negative

SF−5 .

e + SF6 → F + SF−5

Ion-neutral collisions

Ions and neutrals often interact with collisions exchanging both kinetic and internal

energy in the process. Ionisation can occur by fast ion or atom bombardment of a neutral,

provided the incident particle has at least enough energy to overcome the ionisation

threshold of the bombarded neutral. Charges can also sometimes be transferred between

ions and atoms in these collisions:

A + A+ → A+ + A

Metastable collisions

A metastable atom is one which has been previously energised above its ground state,

and has a long lifetime (will exist for some time before relaxation occurs). These atoms

can collide with all of the other particles in the plasma as normal, with slightly different

results due to their relatively high energies. Penning ionisation is the ionisation of a

neutral by a metastable atom. Two colliding metastables can have enough energy to

overcome both of their ionisation thresholds, ionising each other in a collision. Similar
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to ground state atoms, metastables can be ionised by simple electron impact ionisa-

tion. Because metastable atoms are energised above ground state, there are many more

electrons in the discharge that have enough energy to ionise them.

2.1.5 Mean free path and collision cross section

The mean free path refers to the average distance travelled by a particle between two

successive collisions. At a given gas temperature, the mean free path lf is inversely

proportional to the gas density nn and the gas pressure p. In kinetic theory, the mean

free path of particles with a Maxwellian distribution of velocities is given by:

lf =
kBT√
2πd2pp

(2.8)

where dp is the diameter of the gas particle and p is the gas pressure. Using the mean

free path, and the average speed of particles that is described in Equation (2.3), an

expression for collision frequency fc is given by

fc =
v̄

lf
. (2.9)

To all but the slowest moving electrons, ions can be seen as relatively stationary

during the approach of an electron to a collision. An effective collision cross-section of a

gaseous atom/molecule can be defined which is used to express the likelihood of interac-

tion between particles. As an electron approaches an atom, the Coulombic interaction

between the electron and the nucleus and orbiting electrons of the atom is governed by

the relative speeds and trajectories of the approach. There is an element of probability

to the collision results and this probability is implicit in the definition of a collision

cross-section. The collision cross section is dependant on the approach velocity as the

particle interaction time will be dependant on the velocities at which they are travelling.

The idea of a collision cross-section is an alternative view to the mean free path.

While the simpler model of a mean free path is usually reserved for elastic collision

processes, the collision cross-section is often employed during the analysis of inelastic

collisions. Every collision process documented in Section 2.1.4 has a collision cross-

section that varies with electron velocity or energy. Since each collision is defined by

a probability, it is usual to culminate all of the individual probabilities into one total

collision cross-section, which is a measure of the probability of a particle being scattered

during a collision.
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2.1.6 Floating substrates and sheath formation

As defined so far, plasma is made up of an equal number of electrons and positive ions

moving randomly in a sea of electrically neutral atoms and molecules. The plasma

density is defined as the electron or ion density which is usually much less than the

density of the neutrals present. It can be shown that the flux of particles (ions, electrons,

or neutrals) per unit area, Φ, is

Φ =
nv̄

4
, (2.10)

where n is the density of the particles of interest and v̄ is their mean speed, calculated

using (2.3). Following this, the current densities to a small electrically isolated substrate

suspended in the plasma will [21] be

je =
enev̄e

4
(2.11)

ji =
eniv̄i

4
(2.12)

where je and ji are the electron and ion current densities respectively. As v̄e is much

greater than v̄i, the electron current is much greater than the ion current, leading to a

build up of negative charge on the isolated substrate.

The accumulated negative charge repels further incoming electrons to the substrate

and attracts slower moving positive ions. The charge continues to build until eventually

the electron flux to the substrate is retarded such that it evenly balances the ion flux.

Apart from disturbances in potential such as this accumulated charge, the plasma is

equipotential at the plasma potential, Vp. The isolated substrate in the plasma is charged

to the floating potential, Vf . Because Vf repels electrons, it is at a lower potential than

Vp. Since electrons are repelled from the substrate, a region of net positive charge

forms in the space around the surface of the substrate. This region of positive charge is

known as a sheath and has an associated space charge density ρ around it [21]. Poisson’s

equation relates the variation in potential V with the distance x across the sheath.

d2V

dx2
= − ρ

εo
, (2.13)
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where εo is the permittivity of free space. The electric field across a distance x changes

in non-equipotential regions such as the sheath. The sheath has a net positive charge

that causes a reduction in electron density close to the substrate and also a reduction in

the amount of luminescence from this region (because of less electron impact collision

processes). Hence, the sheath appears as a dark space around an object in the plasma.

The only electrons that can penetrate the sheath by overcoming the sheath voltage

Vp − Vf , are those who strike the sheath with energy greater than e(Vp − Vf ). The

fraction of electrons able to achieve this, n′e, is found using the Maxwell-Boltzmann

equation (Equation (2.4)) such that [21]

n′e
ne

= exp

[
− e(Vp − Vf )

kBTe

]
(2.14)

The only electrons that make it through the sheath begin with a very high energy,

and after traversing the sheath this is reduced to approximately v̄e by the sheath voltage.

The sheath has the effect of accelerating the ions that enter it, where they eventually

strike the substrate surface with the energy of the sheath voltage, assuming no inter-

particle collisions within the sheath itself.

The effects of the sheath, however, do not cease at the line where the ion and

electron densities become equal again. There exists a quasi-neutral transition region of

low electric field that extends into the plasma [21], first discovered by Bohm (1949).

This region is known as the pre-sheath, and its effect is to increase the speed of the ions

approaching the sheath.

Using the principles of conservation of momentum and energy, Bohm showed that

the ions entering the sheath must have an initial velocity of

vi =

(
kBTe
mi

) 1
2

. (2.15)

where mi is the mass of the ions. The ions acquire this energy in the pre-sheath

region, which gives ions a directed velocity by the time they strike the substrate [22],

hence increasing the ion flux to objects in the plasma. The separation of plasmas into

quasi-neutral bulk regions and positive space charge sheaths is important in all plasma

discharges because the directionality of ions striking substrates is important for many

plasma processes. In the bulk plasma region, the instantaneous and time averaged

electric fields are low, whereas in the sheath regions, high electric fields are present.
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2.1.7 Debye Length

The Debye length λd is a measure of the distance over which mobile charge carriers

(e.g. electrons) screen out electric fields in plasmas. The Debye length is a measure

of how rapidly a perturbation in potential is attenuated in the plasma, and its value is

approximately calculated [21] as

λd =

(
kBTeεo
nee2

) 1
2

. (2.16)

The shielding effect occurs because if a charge appears in a plasma, opposing mobile

charge carriers cloud around it and shield its effect from the surrounding plasma. λd

increases with increased Te, and would collapse to an infinitely thin layer in the absence

of thermal movement [24].

Such charge screening maintains the quasi-neutrality of the plasma as a whole. After

one Debye length, perturbations in charge are reduced to 0.37 of their initial value. The

edge of the cloud that surrounds points of charge could be seen as the point where the

electrostatic potential reduces to the thermal energy of the electrons and ions in the rest

of the plasma, ∼ kBTe. Effectively, a charge at a point in a plasma will be affected by

interactions with other particles that fall within a sphere with a radius of one or two

Debye lengths. For particles outside of this sphere, the effect of the interactions will be

negligible.

2.1.8 Secondary electron emission

Secondary electron emission is the emission of an electron that occurs when a particle

strikes a surface. Secondary electron emission can occur for ion, electron, photon and

neutral bombardment. The secondary electron emission coefficient is defined as the

average number of electrons emitted per incident particle [21]. The secondary electron

emission process is an important source of electrons for plasma discharges, contributing

electrons to the discharge to counteract electron loss mechanisms.

A secondary electron emission coefficient can be defined for every type of particle in

the plasma that comes in contact with the surface in question. Both the secondary elec-

tron emission yield from electron bombardment and from ion bombardment depends

heavily on the surface chemistry of the bombarded surface. This dependence is im-

portant in manufacturing processes where the target surface can be changed in time.
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The emission coefficient also varies with the incident ion or electron energy. In general,

insulators have a much larger secondary electron emission yield for ions than conductors.

Secondary electron emission as a result of photon bombardment of a surface is well

understood and is known as photoemission. Photoemission occurs if the incoming photon

has enough energy to remove one of the outermost electrons from the atoms of the

surface. This energy is known as the work function, φw, of the metal. Photoelectric

yield is generally a low value, but rises with increasing photon energy, Eph = hfph.

2.1.9 Plasma oscillations

When the quasi-neutrality of a plasma is perturbed, the plasma reacts to restore its

neutrality, causing waves and oscillations to move through the plasma particles. These

waves can be electromagnetic or acoustic (longitudinal) waves, and are known as plasma

oscillations.

In the case where a set of the electrons in the plasma are moved by a small amount in

one direction, a group of positive ions will be left behind. The electrons will immediately

be attracted back to the ions by the excess positive charge, overshoot their original

positions, and then return again. This movement repeats until the electrons settle,

resulting in very fast, small amplitude oscillations that occur at the plasma frequency

given by [21]

fp =

√
e2ne
ε0me

1

2π
Hz, (2.17)

assuming ions of infinite mass. The plasma frequency is generally in the gigahertz

range.

The waves that move through the ions in the plasma act in a different manner,

and behave as ion acoustic or sound waves, which are longitudinal oscillations of the

ions much like acoustic waves travelling in neutral gas. Similar to electron waves, ion

waves are caused when the ions move from their equilibrium positions. The surrounding

electrons can move quickly enough to shield out the electric field caused by this ion

movement. However, since a portion of the electron motion is random thermal motion,

the shielding effect is not perfect, allowing electric fields to leak out and create the ion

acoustic waves. The speed of the waves cs is given [22] by
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cs =

√
kBTe
mi

. (2.18)

Because the ions have a much larger mass than the electrons, the ion oscillations are

much slower than the electron oscillations, typically having a frequency between zero

and the megahertz ranges. Particularly slow ion acoustic waves can be detected with

the naked eye as variations in the luminous intensity of the plasma .

2.2 Basic plasma discharges

In this section, a description of two basic plasma discharges are provided, direct current

(DC) and radio frequency (RF) discharges. Although most plasma processing applica-

tions use a RF excited plasma, DC discharges are simpler to analyse and many of the

principals transfer to RF plasmas.

2.2.1 DC discharges

A DC discharge is created by applying a DC potential between an anode and a cathode

inside of a chamber filled with a low pressure gas. As free electrons and ions that exist

in the gas from random thermal processes accelerate under the influence of the electric

field between the electrodes, ionisation of other molecules begins as described in Section

2.1.4. The gas will take on the familiar glow of a plasma as the process continues due

to the excitation and relaxation processes occurring between the excited particles.

DC discharges consist of several distinctive regions of glowing and dark spaces. Fig-

ure 2.3 shows the regions that appear, most of which are visible with the naked eye. The

positive column varies with the length of the discharge tube, all other parts remaining

a relatively constant size until the tube is made too small to have a positive column.

The smallest size of discharge tube within which a plasma can be maintained is approxi-

mately twice the dark space thickness; at any smaller sizes the discharge is extinguished

[21].

To maintain a continuous current in the system, the currents to each electrode of the

discharge seen in Figure 2.3 must be equal. Typically the cathode may be at a potential

of −2000V , and have a current density of 0.3 mA/cm2, which is much less than the

random electron flux expected at the electrodes when calculated from Equations (2.11)

and (2.12). Hence, it is assumed that electric fields exist to retard the electron flux at
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Figure 2.3: Structure of a DC excited plasma discharge. Several distinguishable
regions form as a result of the collision processes occurring under the influence of the

DC potential between the anode and cathode.

both the anode and the cathode, i.e. the plasma is at a higher potential Vp than both

of the electrodes. However, some current still flows, so the anode is more positive than

Vf , the floating potential (Section 2.1.6). Figure 2.4 shows a simplified model of the

potential variations across the discharge.

Figure 2.4: Voltage distribution in an example DC glow discharge process [21]. The
plasma does not take a potential intermediate between those of the electrodes, but
rather it is the most positive body in the system. The electric fields at the sheaths are

such as to repel electrons from the electrodes.

For the discharge to be continuous, the energy losses from the discharge must be

balanced by the energy input, and all recombination and relaxation must be balanced

by ionisation and excitation.

In the cathode region of the discharge, secondary electron emission from the cathode

plays a considerable part in electron impact ionisation in the cathode sheath region. Each
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secondary electron can produce an avalanche effect of ionisation in the sheath area due

to the strong electric field, helping maintain ion flux to the cathode. Fast electrons are

also generated in the cathode sheath. These fast electrons are electrons that manage

to travel through the sheath without collision with other particles, gaining all of the

energy from the sheath potential. Such electrons have a small collision cross-section due

to their high speeds and are likely to traverse the full discharge to impact the anode

with considerable energies.

At the anode, the sheath is typically one order of magnitude smaller than that at

the cathode. The fast electrons that are generated at the cathode strike the anode and

create further secondary electrons that are accelerated by the anode sheath back into

the glow region. These secondary electrons are a major source of electrons and energy to

maintain the glow region of DC discharges. The anode sheath is of sufficient magnitude

to repel some of the random electron flux from the plasma bulk. However, this repulsion

is not as strong as for floating substrates since the net current to the anode is maintained

to be an electron current.

The negative glow region of the discharge consists of an ionised gas of approximately

neutral charge overall. However, due to the fast electrons produced at the cathode, this

plasma is unlike the simple plasmas described in Section 2.1.1. Collisions between neu-

trals, metastable ions, and thermally excited electrons are the main sources of ionisation

in the glow region. The electrons remain trapped in the glow region due to the potentials

of the cathode and anode sheath regions.

A full description, and a more detailed physical examination of the constituent parts

of the discharge, is provided in [18], [21] and [24]. A more detailed summary has also

been completed in [25].

2.2.2 RF discharges

For most industrial applications, glow discharge processes are powered using oscillating

electric fields, with high frequency power supplies. RF discharges are different from

DC discharges since there are no dedicated anodes or cathodes, and no defined floating

potential.

Why use RF?

The main reason for using RF discharges in plasma processes is that a DC bias cannot

be applied to a semiconductor wafer in a processing chamber, as some of the layers
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of the wafer may be made up of insulating materials. A DC bias is useful in plasma

processing applications to ensure that reactive species are attracted to the wafer surface

in a directional manner. Insulating layers ensure that upper layers on the wafer surface

behave as electrically isolated conductors that assume the floating potential and are un-

usable for processing applications where directional ion fluxes and energies are required

at the wafer surface [21]. It is, however, possible to impose a time-averaged DC bias to

insulators using RF frequencies [22].

If the cathode/target in an RF discharge is an insulator, it gathers positive charge by

losing electrons to incoming ions attracted during the negative parts of the RF cycle, and

this positive charge is neutralised by electron bombardment during the rest of the cycle.

With low RF frequencies (∼ 50 Hz), an on/off effect is observed where a series of short

duration DC discharges are created. To create a continuous discharge, high frequencies

are necessary, and in practice, a discharge can be maintained with frequencies above

approximately 100 kHz [21].

Another advantage of RF frequency excited discharges is that they are more efficient

at promoting ionisation and sustaining the discharge [21] than their DC counterparts.

The enhanced ionisation arises from the fact that the movement of the electrons in the

discharge are fast enough to be modulated by the applied RF frequency. Let us take

for example an electric field of ξ of amplitude ξo and angular frequency ω along the x

direction.

ξ = ξ0 cosωt (2.19)

The electron position and motion can be derived as

meẍ = −eξ0 cosωt

ẋ = − eξ0
meω

sinωt

x =
eξ0
meω2

cosωt

(2.20)

x gives the electron displacement from a point centered between the electrodes. The

enhanced ionisation of RF discharges, when compared to DC discharges, arises when

electrons make elastic collisions and reverse direction at the same time as the electric field

reverses polarity. In this way, electrons can rapidly gain energy to reach the ionisation

energy of the neutral atoms, for quite weak electric fields [21]. The electrode sheaths

are also modulated by the RF frequencies and electrons can “collide” with these also,

rebounding into the discharge with a greater momentum.
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The RF discharge does not have as many clearly defined regions as the DC discharges

shown in Section 2.2.1. Rather, RF discharges consist typically of only three parts:

two electrode sheaths and the plasma bulk. The discharge is maintained by secondary

electrons from ion bombardment of the electrodes, by exciting electrons in the plasma

glow via the oscillating electric field, and finally by exciting electrons that “collide” with

the modulated sheath.

Discharge frequency

The frequency of the RF power applied to the chamber electrodes determines whether

electrons are trapped in the inter-electrode space, or lost to the electrodes in each half

cycle. The maximum displacement of electrons during each half cycle is given by eξo
meω2

which arises from Equation (2.20). Equation (2.20) was derived without taking into

account the electron collisions in the plasma. Introducing a term νe as the collision

frequency for momentum transfer, the maximum displacement xmax can be shown [18]

to be

xmax =
eξo
me

1

ω(ν2e + ω2)
1
2

. (2.21)

With an inter-electrode spacing of d, the cutoff frequency fce for which electrons are

trapped between the electrodes is found when xmax = 1
2d, and given [24] by

fce =
eξ

πmeνed
, (2.22)

assuming that νe � ω. If f > fce, where f = ω/2π, the electrons become trapped

and oscillate between the two electrodes. These electrons are now only lost from the

inter-electrode region by lateral diffusion and other loss processes. Because ions have

a much greater mass than electrons, the oscillatory motions of ions will be less by a

factor of ∼ mi/me ∼ 103, and so the ions can be considered relatively stationary at high

frequencies. At frequencies above fce, a true continuous RF discharge is maintained

between the electrodes.

Self-bias of electrodes

As electrons in the discharge have a much smaller mass than that of the ions, their

velocity is more affected by the applied RF field. Hence, for the same electric field,

electrons carry more current than ions. In a discharge excited by a voltage with a

square wave shape, more electrons strike the target electrode during positive sections
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of the cycle than ions during the negative sections, resulting in the target assuming a

negative bias (assuming the target is isolated from ground via a blocking capacitor or has

underlying insulating layers). As a result, high energy ion bombardment is alternated

with low energy electron bombardment at the target, ensuring that there is a fixed

current conducted during each portion of the RF cycle.

When the applied voltage has a sine wave shape, the resulting voltage at the target

electrode will be the same shape but offset in the negative direction by a fixed voltage

known as the dc offset voltage. The target electrode has acquired a self-bias Vbias as

seen in Figure 2.5. While large ions may not move quickly enough under the influence

of the applied RF power, they are accelerated by the persistent DC bias on the target

electrode.

Figure 2.5: Voltage waveforms at the generator and target in an RF discharge. The
electrode acquires a negative bias with respect to the applied potential from the gen-
erator. This effect is due to the relatively high mobility of electrons compared to the

ions in the discharge.

Voltage distribution in RF systems

For many applications, the energy of the ions that strike the surfaces of the electrodes,

targets, and chamber walls is an important parameter. This energy is related to the

voltage drop across the sheath at the plasma-surface interface. For the parallel-plate

type RF reactor of unequal electrode areas shown in Figure 2.6, the relationship between

the electrode voltage drops, V1 and V2, and the surface areas of the electrodes A1 and

A2 is given [24] by
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V1
V2

=

(
A2

A1

)q
. (2.23)

V1 and A1 refer to the powered electrode, where the wafers are placed, and V2 and

A2 refer to the grounded electrode. In some processing tools, the wafers are placed

on a grounded electrode, and power is supplied to the other. A theoretical work by

Koenig and Maissel in 1970 gave the exponent q a value of 4, using a simplified plasma

model. Their scaling law is restricted to low pressure situations and assumes also that

the current density is equal at both electrodes and therefore, cannot be applied to all

circumstances. The actual value of q is typically found to be < 2.5 at higher pressures

where collisions become more influential. A detailed discussion on the factors affecting

q and the q for a number of chamber configurations is given in [18].

Figure 2.6: Voltage distribution in an parallel plate RF discharge with unequal elec-
trode sizes [24]. In this diagram, A1 � A2. A larger sheath voltage is formed at the

electrode with smaller surface area.

Hence, wall sheaths can be reduced and ion energy to the target can be increased by

reducing the target surface area. However, current trends in microprocessing techniques

require target areas/wafers that are becoming larger, which reduces the wall to target

area ratio. This tends to increase the wall sheaths in the processing chamber, and

encourage high energy ions to participate in wall reactions.
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Matching networks

To maximise the power transferred from the power supply to the plasma, it is common

practice to include a matching network circuit on the powered electrode supply circuit.

Power is not transferred efficiently if the RF power source is connected directly to the

plasma discharge.

To understand this, the discharge is modelled as a complex load Zl with resistive

Rl and reactive Xl components such that Zl = Rl + jXl. The RF power source is

modelled as an ideal voltage source Vs with complex amplitude ‖Vs‖ in series with a

source impedance Zs = Rs + jXs (a Thevenin equivalent representation). The current

in the circuit has a complex magitude ‖I‖, which is given by

‖I‖ =
‖Vs‖

‖Zs + Zl‖
. (2.24)

The average power dissipated in the plasma is given by the square of the mean

current multiplied by the resistive portion of the plasma impedance

Pl = I2rmsRl =
1

2
‖I‖2Rl =

1

2

( ‖Vs‖
‖Zs + Zl‖

)2

Rl (2.25)

Pl =
1

2

‖Vs‖2Rl
(Rs +Rl)2 + (Xs +Xl)2

(2.26)

The maximum power transfer from the source to the load is obtained whenXl = −Xs

and Rl = Rs such that

Pmax =
1

8

‖Vs‖2
Rs

, (2.27)

and the source and the load are said to be matched [18].

Typically, Rl � Rs and Xl 6= −Xs and so maximum power transfer is not achieved

with a direct connection between the power source and plasma electrodes. A matching

network circuit between the RF source and the plasma discharge is used to achieve

maximum power transfer as shown in Figure 2.7. The matching network is designed to

present a purely resistive load to the generator equal to the resistance of Rs. Typical

RF generators have an output resistance of 50 Ω.

Matching networks contain variable elements that allow the impedance presented

to the RF generator to be changed in order to match the changing plasma parame-

ters. For parallel-plate plasma reactors, the plasma discharge is typically found to be
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Figure 2.7: Matching Network between plasma and generator. The matching net-
work is automatically controlled to ensure that maximum power transfer between the

generator and the discharge is maintained.

capacitive, with the capacitance changing in response to changes in the process (tem-

perature, pressure, gas flows etc.). A typical three element matching network is shown

in Figure 2.8. This configuration is known as a “pi” network, due to the configuration

of the three impedances. Three element networks typically consist of a fixed inductance

value in combination with two variable capacitive elements, termed the load and tune

capacitors. Two element “L-type” networks are also used extensively for low resistance

loads.

Figure 2.8: RF Matching Network in pi configuration. Two variable capacitors are
used to allow the matching network to adjust to counteract for the variable complex
impedance presented by the process chamber. The pi-network configuration gets its

name from the shape of the inductance and dual capacitor circuit.

The matching network maximises power transfer to the plasma by ensuring that the

load that the RF power source sees is purely resistive, and protects the generator from

any reflections that may be induced in the power circuitry. The tunable vacuum capaci-

tors tend to be large and expensive [22], and considerable RF expertise is required to set

up the matching network, as every wire has an appreciable inductance and capacitance

at the high frequencies in use.
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2.3 Plasma etching

With a basic understanding of plasma discharges, plasma etch is now examined. Plasma

etching is the use of a plasma to remove material from a surface in a controlled manner.

The main process is the reaction between the ions created in the plasma with material

on the target surface. This reaction is engineered to form a volatile etch product that

is removed by means of a gas flow through the entire plasma etch chamber. Ions from

the plasma are attracted to the wafer surface by a DC bias voltage on the wafer. The

ions are accelerated towards the wafer in a highly directional manner by means of the

bias voltage and sheath voltage at the wafer surface.

2.3.1 Why plasma etch?

Before the advent of plasma etching (pre 1960), the first etching processes used liquid-

phase (“wet”) etchants. Although cost effective and often providing infinite selectivity

(the ability to etch one material and not another), wet etching produces an isotropic etch,

that is etching that proceeds in all directions simultaneously. The minimum feature size

of such techniques is hence limited, and plasma etching (sometimes called dry etching)

is required to obtain a more directional or anisotropic etch to cater for the dense packing

of today’s microchips.

Let us assume a surface where the lithographic pattern is in the x-y plane and the

z direction is normal to this plane. An etch process is described as isotropic if the etch

rate in the x, y and z directions are equal [26]. Anisotropic etch processes usually have

etch rates which are faster in the z direction as shown in Figure 2.9.

Since the ions of a plasma discharge bombard the wafer surface in a downward

direction governed by the sheath voltage and the DC bias that is placed on the wafer,

a highly directional etch can be achieved using plasma etch for two main reasons [27].

Firstly, ion bombardment damages the wafer surface so that it becomes more reactive,

and secondly, the bombarding ions help remove etch-inhibiting species from the surface.

Ion collisions in the sheath can reduce the directionality of the approaching ions, resulting

in sidewall bombardment and some lateral etch. This effect is counteracted with reduced

chamber pressure to lower the number of neutrals present in the sheath, reducing the

number of collisions that occur.

Plasma etching is typically used to remove thin layers from wafer surfaces. The

etch is complete when the layer is fully etched and the etched trenches have attained

a desirable profile. Accurate detection of this end point is crucial to prevent unwanted
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Figure 2.9: Isotropic and directional (anisotropic) etch profiles. There is a limit to
the smallest achievable feature size that can be etched using isotropic etch methods.

etching of the next layer. Manufacturing processes typically include an over-etch step

that uses less aggressive chemistry than the main etch step to clear all material from

the bottom of etched trenches once end point has been detected.

2.3.2 Plasma etch mechanisms

There are a number of different mechanisms that occur during the etch of a wafer surface.

The complete etching process can be reasonably approximated by the following steps

[22]:

1. Reactive species are created by electron collisions in the plasma.

2. Reactive species are transported to the wafer surface by means of the DC bias on

the wafer and the sheath at the plasma-surface interface.

3. The species are adsorbed on the surface (physisorption or chemisorption)

4. The etch product is formed on the wafer surface by dissociation of the reactant,

formation of bonds to the wafer surface or diffusion into the surface.

5. The volatile etch product desorbs from the wafer surface.

6. The etch product is transported back into the plasma.
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Figure 2.10 shows a schematic of the processes that are occurring in a simplified

plasma etch chamber. With this overall view of the etch process, details of the reactions

and mechanisms that occur are now examined.

Figure 2.10: Schematic of Etch Process [27]. Reactive etchant species are created
in the plasma which react with the wafer surface to form volatile etch products. A

continuous gas flow is maintained to replenish the supply of etchant species.

Spontaneous surface etching

Spontaneous surface etching, or chemical etching, is a chemical method in which neutral

reactive species generated by the plasma interact with the materials surface to form

volatile products [27]. Examples of such processes are the reactions between F with Si,

or Cl2 with Al.

Chemical etching usually provides good selectivity, isotropic etch profiles and a low

ion-bombardment-induced damage to the wafer. The etch rate of chemical methods
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depend on a number of factors such as the chemicals in use, the temperature of the

surface and the silicon doping level. More details on these effects are discussed in [22].

Mechanical etching

This type of etching is a more physical process than chemical etching and is also known

sputter etching. During sputter etching, the target surface is bombarded by high-speed

positive ions. With the energy of each impact, particles are physically removed, or

sputtered from the target surface. Most of the particles are ejected by momentum

transfer from the incoming ions. The bombarding ions are accelerated by the sheath

potential as they approach the wafer surface and their impact energy can be controlled

by adjusting the bias voltage on the wafer. Sputtering yield is affected by the angle of

collision, ion bombardment energy and the mass and energy of the incoming ions [22].

Sputter etching yields very directional etch performance, but results in surface dam-

age from ion bombardment of the wafer. Selectivity is difficult to achieve during sputter

etch [27].

Ion-enhanced chemical etching

This is a hybrid technique, that uses a physical technique to enhance the chemical etching

of a surface. First discovered in 1979, early experiments found that when a surface is

exposed simultaneously to both chemical etching neutrals and ion bombardment, the

resulting etch rate was greater than the sum of each method individually. This famous

experiment was carried out by Coburn and Winters [26], using XeF2 and Ar+ to etch

Silicon. Their findings are shown in Figure 2.11.

During ion-enhanced chemical etching, the bombarding ions give energy to particles

on the surface and encourage the etching reaction. Studies have demonstrated that ions

with a greater mass contribute to faster etching since they dissipate more energy on the

target surface [22].

The combination of etching mechanisms takes the advantages of each technique indi-

vidually, and is associated with anisotropic etch profiles, good selectivity and relatively

little ion-bombardment damage to the wafer surface [27].
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Figure 2.11: Enhancement of chemical etching etching via ion bombardment. These
results were first obtained by Coburn and Winters in 1979 [26] using XeF2 and Ar+ to

etch silicon surfaces.

2.3.3 Selectivity and Polymerisation

Selectivity in an etch process is the ability to alter the etch rate of one material compared

to another. Selectivity allows finer control over the etch process and ensures that only

the required material is etched from the wafer surface. As an example, the etching of

silicon (Si) and silicon dioxide (SiO2) using a CF4 discharge is examined. In this process,

through electron impact ionisation, CF4 molecules are dissociated (in 90% of cases) [21]

as

e + CF4 → CF+
3 + F + e.

Less often, CF+
2 and CF+ are produced. The CF+

3 molecules bombard the silicon

wafer surface under the influence of the sheath voltage and applied DC bias. The impact

energy at the surface cause the molecules to dissociate further into carbon and fluorine

atoms. The fluorine atoms F react readily with the silicon to form SiF4, a volatile

product that desorbs from the wafer surface and is transported to the exhaust of the

etch chamber.

Si + 4F → SiF4

Silicon Dioxide (SiO2) is etched in a similar process such that

SiO2 + 4F → SiF4 + O2.
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The carbon that remains on the surface after the etching reactions is removed by

forming carbon oxides using oxygen from the discharge. Without the use of oxygen, the

carbon forms C2F6 and desorbs back into the plasma. This formation of C2F6 consumes

fluorine, hindering the silicon etch process. On SiO2 surfaces, oxygen is more readily

available as a product of the etch reaction and so the carbon atoms are removed easily.

Introducing variations in the gaseous make up of the plasma allows the selectivity

of the etch process to be adjusted as required. It is possible to increase the etch rate of

silicon by adding oxygen to the discharge. This oxygen removes the carbon produced

during the etch reaction readily from the wafer surface, exposing it for further etching

and freeing up more fluorine atoms so that etching can proceed faster. The addition

of hydrogen gas to the discharge causes the etch rate of Si to decrease while the SiO2

rate remains fairly constant [24]. Hydrogen has a high affinity for fluorine and readily

forms HF [21], reducing the number of F atoms available for etch, hence reducing the

etch rate. In SiO2, this effect is less dramatic as it is offset by the “built-in” oxygen

supplied by the etch reaction. Effectively, the F:C ratio in the plasma is adjusted in this

selectivity tuning process. Solid materials can also absorb fluorine from the discharge

to reduce the F:C ratio, or the input gas could be changed to one that contains fewer

fluorine atoms per carbon atom, e.g. C5F12.

Hence, high selectivity of SiO2 etching over Si etching is achieved by limiting the

F:C ratio. However, a coating of carbon in the form of a polymer (CF2)n, begins to form

on all surfaces in the chamber if the F:C ratio is sufficiently limited. The condensation

of these polymers from the plasma onto surfaces is known as plasma polymerisation

which stops the etching process everywhere. The achievement of high SiO2 selectivity is

therefore an exercise in trying to get as close to the onset of polymerisation as possible

[24] while still etching SiO2.

Ion bombardment of the wafer surface slows the onset of polymerisation on the wafer

surface. Often, polymerisation can be occurring on the walls of the plasma chamber, but

under ion bombardment, etching is simultaneously occurring at the wafer surface [21].

Polymerisation can be used to form protective coatings in some applications, and so is

not always unwanted. A combination of polymerisation on the walls of etched trenches

with directional etching at the bottom of the trenches can be used in some processes to

produce very high aspect ratio trenches on wafer surfaces.
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2.3.4 Uniformity

Uniformity in plasma etch refers to two things: the evenness of etching across a single

wafer and the degree to which etch rates are maintained from wafer to wafer in the same

chamber [24].

Uniformity across a single wafer requires spatial uniformity of plasma properties such

as plasma density, species concentrations, and electron temperature, across the entire

surface of the wafer. A uniform supply of etchant chemicals to the wafer area is important

to maintain a consistent etch rate, and is often achieved via a shower-head gas delivery

system. Etch rates can also vary across the wafer depending on feature size and pattern

density. These uniformity problems fall under two categories - aspect ratio dependant

etching (ARDE) and pattern dependent etching, or micro-loading [27]. The aspect ratio

of an etched trench is the ratio of the depth of the trench to its width. ARDE causes

trenches in the wafer with a large aspect ratio (> 5 : 1) to etch more slowly than trenches

with a smaller aspect ratio (mainly due to gas transport limitations). The loading effect

in plasma etch is the effect that different exposed areas on the etch wafer surface have

on the etch rate achieved. Differing exposed areas lead to different consumption rates of

etchant species from the plasma. Micro-loading occurs when etchant species are depleted

from localised areas of the wafer due to uneven distributions of exposed substrate across

the wafer surface.

Uniformity between different wafers processed in the same chamber depend on a

variety of effects that can be difficult to quantify. Etch chambers typically undergo

scheduled preventative maintenance (PM) operations on a regular basis that can dra-

matically alter the operating characteristics of the etch process as components are re-

placed and/or cleaned. As wafers are processed between each PM event, etch chambers

undergo a conditioning effect where material arising from each etch cycle is deposited

on the chamber walls. This conditioning can alter the chamber behaviour, influencing

the etch rate achieved for each wafer. Etch chamber performance is typically monitored

in fabrication environments through the use of statistical process control (SPC) [9] and

regular cleaning and maintenance cycles are used to keep process performance within

specifications. Etch behaviour also differs between wafers processed in individual lots

as etch chambers heat and condition due to repeated etching processes. The first wafer

effect describes the typical phenomenon whereby the first 1-2 wafers etched in each lot

yield considerably different results compared to the remaining wafers.
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2.3.5 Plasma property effects

The etching plasma is highly sensitive to variations in the plasma chamber conditions.

The main characterising properties are the etchant gas, the chamber pressure, the fre-

quency of the discharge, the gas flow patterns, and the size and shape of the chamber

itself [24]. In this section, the effects of pressure, frequency, and gas flow on the plasma

are examined in some more detail.

Pressure effects

The pressure of the plasma chamber influences the properties, and hence the etching

behaviour, of the plasma [24]. The plasma properties influenced include:

1. RF voltage amplitude, which affects sheath potential and ion bombardment energy,

2. Sheath thickness, in situations with mobility controlled ion motion (collisional

plasmas),

3. Electron temperature, which controls ion-to-radical abundance ratios, and

4. Relative rates of different chemical processes in the plasma.

The most dramatic effect of pressure variation is on the sheath potential. As pressure

decreases below approximately 1 Torr, the sheath voltage drops begin to increase sharply

[24] and the increased potential causes ions to strike the target with much more energy.

Since the mean free path of particles is inversely proportional to pressure, this also

adds to the higher energy ion flux to the surface, shifting the main etch mechanism

from chemical to physical etching. There is a threshold value for this shift to occur

that depends on the ions used and the surface being bombarded. Too high of an ion

bombardment energy can lead to damage of the wafer surface and a loss of selectivity.

Frequency effects

As well as DC and RF excited plasmas, there are also those that are created using

microwave energy. RF discharges usually operated at 13.56 MHz, because this frequency

has been set aside by the Federal Communications Commission (FCC) authority to

avoid communications interference. Microwave discharge sources usually include wave-

guides, magnetrons and other speciality equipment, and operate at 2.45 GHz, again in

accordance with FCC regulations.
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The frequency used to excite the plasma discharge affects the plasma properties in

a number of different ways [24]:

1. Frequency can affect the spatial distribution of species and electric fields across

the discharge.

2. Frequency determines whether the energy and density of species in the plasma are

constant or fluctuating in time.

3. The frequency of the RF power controls the electron energy distribution, thereby

affecting ion-electron interactions.

Frequency also has an effect on etching behaviour in an etch chamber, affecting

selectivity ratios, polymerisation activity, and etch rates. Considerable research has

been done in this area, and is discussed in the text by Sugawara [24].

Gas flow rate effects

Etch rates vary significantly with the flow rate of the reaction gases. Flow rates are

measured in “standard cubic centimetres per minute” or sccm. One sccm is a cubic

centimetre of gas at standard temperature and pressure (STP), that is 273.15 K (0 ◦C)

at 100 kPa (1 bar).

In general, etch rates increase rapidly as flow rates increase, reach a maximum, and

then tend to fall off as the flow rate increases further. With very low flow rates, the

etch rate is limited because etch products dominate the discharge for a considerable

time before being replaced by the inflow of new etchant gas. The consumption rate of

etchant species is related to the exposed area on the wafer being processed. To achieve

maximum etch rate, the gas flow rate must be altered so that new etchant species are

supplied to replace the etch products in a timely fashion. However, 100% utilisation of

the etchant species is difficult to achieve since etchant species are lost unpredictably to

the chamber walls and other surfaces.

As the gas flow rate is increased further, the etch rate is reduced because etchant

species exit the chamber before they etch the target surface.

2.4 Plasma processing reactors

Plasma processing systems used in industry have four main subsystems [22]:
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1. The vacuum system: Base pressures in plasma processing chambers, before gas in-

troduction, are as low as 10−6 Torr. Such low pressures are typically attained using

a combination of two pumps. Firstly, a turbo-molecular pump, or turbo-pump, uses

a high speed fan to remove gas from the chamber. Secondly, a fore-pump, a large

mechanical pump, is placed between the turbo-pump and atmospheric pressure to

reduce the pressure gradient across the turbo-pump.

2. The gas handling system: Gases are introduced to processing chambers in con-

trolled amounts using mass flow controllers (MFCs). MFCs consist of a flowmeter,

a controller, and a valve, and they are located between the gas source and the

chamber itself [28]. MFCs alter the amount of gas passing through them accord-

ing to a provided set point. A large gate valve at the chamber exhaust controls

the gas flow rate out of the chamber and regulates the chamber pressure.

3. The cooling system: The heat generated during plasma processing must be re-

moved to avoid interference with the process and/or product. Chamber com-

ponents are typically water cooled to control their temperature. The wafer is

maintained at a constant temperature by feeding a coolant gas to the backside

of the wafer. Electrostatic chucks are typically used to hold wafers in place in

etch chambers, where a DC voltage is placed on the chucks to induce an opposite

charge on the back of the wafer and fix it in place. The wafer coolant, typically

helium, passes through grooves in the chuck and along the backside of the wafer,

regulating the wafer temperature.

4. The power system: A steady supply of power is required to maintain a stable

plasma discharge. For RF plasmas, power is supplied by solid state power ampli-

fiers with built in oscillators that generate RF signals [22]. Directional couplers

measure the power flowing to and back from the antenna / matching unit. In

plasma excited using microwave energy, microwaves are produced at 2.45 GHz by

magnetrons outside of the chamber. The microwaves travel down a waveguide,

through a quartz window and into the chamber to excite the plasma.

In this section, three of the main types of processing chambers that are used for

plasma etch are examined.

2.4.1 Capacitively coupled plasmas

Capacitively coupled plasmas (CCPs) are plasmas in which power is capacitively trans-

ferred to the input gas to form a plasma. Typically, parallel-plate reactive ion etch
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(RIE) chambers using CCPs consist of two flat circular electrodes separated by a gap in

which a plasma is generated [22]. Such chambers are arguably the simplest type of etch

chambers and were used extensively in industry from their invention in 1970 until the

mid-90s, when newer technology became more widespread. The target wafer is placed

on the lower electrode and fixed in place using a chuck (either electrostatic or mechani-

cal). Electrostatic chucks are preferable because they prevent the wafer surface bulging

from the pressure of the coolant circulated on its backside. RF power may be applied to

either one or both electrodes to produce the plasma. The sheaths between the plasma

and the wafer control the ion flux to the wafer. A schematic of a parallel-plate CCP

chamber is shown in Figure 2.12.

Figure 2.12: Parallel-plate reactive ion etch (RIE) chamber [22]. The etch chamber
in this diagram is a top powered RIE chamber with a mechanical chuck system. The

plasma is generated capacitively between the electrodes.

Although simple to maintain and understand, parallel-plate RIE chambers have a

number of disadvantages. Firstly, since RF power controls both plasma density and the

magnitude of the sheath voltage, ion flux to the wafer cannot be controlled independently

of ion energy. Additionally, parallel-plate RIE discharges generally produce lower density

plasmas and require higher operating pressures than newer technologies. Finally, the

electron temperature tends to be higher in parallel-plate RIEs, and this can lead to

excessive heating of the wafer. Regardless of these disadvantages, RIE chambers are

still in use today in semiconductor manufacturing plants for some etch processes.

A further modification to parallel-plate RIE reactors is the magnetically-enhanced

RIE (MERIE) chamber. MERIE chambers use permanent magnets behind the wafer

or DC coils around the chamber to generate a magnetic field that is parallel to the
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wafer surface [27]. The magnetic field has the effect of confining electrons to circular

trajectories near the electrodes, reducing losses to walls and increasing collision frequency

and hence plasma density. By confining electron movement, the electron flux into the

sheath is also reduced, which reduces the Coulomb barrier at the sheath (the potential

that normally retards electron flux). The reduction in the Coulomb barrier has the effect

of reducing the RF fluctuation amplitude of the sheath potential. However, the magnetic

fields used by MERIE chambers are known to increase damage to thin oxide layers on

wafer surfaces and potentially cause non-uniformities in the plasma. To decrease non-

uniformities, the direction of the magnetic field can be rotated slowly during processing

[22].

2.4.2 Inductively coupled plasmas

Inductively coupled plasma (ICP) etch chambers differ from CCP (as shown in Figure

2.12) etch chambers since the RF field used to generate the plasma is inductively coupled

to the plasma by an external antenna. ICP chambers are capable of generating high-

density, low-pressure plasmas and allowing independent control of ion flux and ion energy

at the wafer surface [27] through the use of a separate power supply to create a bias

voltage at the wafer. No internal electrodes are used in ICP systems, and no DC magnetic

field is required (as in MERIE chambers). The plasma can be generated close to the

wafer surface by placement of the antenna, allowing high etch rates to be achieved.

The simplest form of ICP is a water cooled copper coil surrounding a cylindrical

chamber in which the plasma is generated. The coil acts as an electromagnet, inducing

an RF magnetic field (and hence an electric field), in the chamber to create a plasma.

Several variations on this design exist. A helical resonator uses a coil that is designed

to naturally oscillate at the drive frequency, allowing the RF power to be supplied to

one end of the antenna only, acting as a tank circuit. A transformer coupled plasma

(TCP) chamber places an antenna in a spiral on top of the chamber so that as much

energy as possible is coupled to the centre of the plasma. A detached plasma source

(DPS) combines the windings of both the helical and transformer coupled designs to

form a dome shaped antenna. The advantage of detached plasma sources is that the

plasma is further removed from the wafer itself, allowing it to diffuse and become more

uniform before etching the surface [22]. Figure 2.13 provides an overview of the main

ICP sources.
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Figure 2.13: Inductively coupled plasma (ICP) sources [22]. In ICP sources, the
plasma is excited by an RF field that is induced in the gas via an external antenna.
A transformer coupled plasma (TCP) uses a spiral antenna at the top of the plasma
chamber, and a detached plasma source (DPS) combines the windings of both the

helical and transformer coupled designs to form a dome shaped antenna.

2.4.3 Electron cyclotron resonance sources

Electron cyclotron resonance (ECR) sources use electromagnetic radiation at microwave

frequencies, along with with strong magnetic fields, to create a plasma. ECR sources

are popular in semiconductor manufacturing since they can produce low-pressure, high-

density plasmas with independent control of ion energy and plasma density. However,

the strong magnetic field and complex microwave waveguide equipment makes these

reactors more complicated and expensive than other chamber designs.

In a magnetic field, electrons rotate around the magnetic lines of force with angular

frequency [24] ωce given by

ωce =
eB

me
, (2.28)

where e is the electron charge and B is the magnetic flux density. The frequency ωce

is the electron cyclotron frequency or gyrofrequency. In ECR plasma sources, microwaves

oscillating at the electron gyrofrequency ωce are used to rapidly energise the electrons

through a resonance effect in the etchant gases. The energised electrons then proceed

to ionise the surrounding molecules by high speed collisions [24] to create a high density
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plasma. For 2.45 GHz microwaves, the resonance effect occurs at a magnetic flux density

of 875 G.

As shown in Figure 2.14, in ECR chambers, the wafer and plasma are contained

within a quartz bell jar separate to the microwave entrance. The microwaves enter the

bell jar to reach the plasma gases and excite the plasma. Around the chamber, large DC

coils create a magnetic field that runs through the chamber towards the wafer target.

In some ECR chambers, the bell jar is replaced with a flat quartz window to separate

the microwave entrance from the plasma.

Figure 2.14: Electron cyclotron resonance (ECR) plasma etch chamber. In ECR-
based chambers, microwaves at 2.45 GHz are used to accelerate electrons spiralling in
a magnetic field. Resonance occurs at a magnetic flux of 875 G, when the electron

gyrofrequency is equal to the microwave frequency.

A resonance zone is created in the plasma chamber where the magnetic flux density

is constant at 875 G. The resonance zone, usually shaped like a shallow dish, is localised

since the magnetic field in the chamber is non-uniform [22]. Collisions prevent the elec-

trons from gaining excessive amounts of energy, along with the fact that the resonance

zone is of fixed size.

To change the distribution of ions on the wafer surface, the position of the resonance

zone can be changed by varying the currents in the magnetic coils that surround the

chamber. This effort is assisted by the fact that microwaves exhibit a high degree
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of spatial localisation. Hence, the resonance zone where plasma is generated can be

separated from the wafer surface.

The plasma streams, or diffuses, along the magnetic field lines towards the wafer.

An RF potential is placed on the wafer to control the wafer sheath, providing control

over the ion energy to the wafer surface. In this way, the ion energy to the wafer can be

controlled independently of the plasma generation, and this control is one of the main

advantages of the ECR etch chambers.

An in-depth discussion of microwave propagation in plasmas, electron heating mech-

anisms, and further details on ECR etch operations can be found in [22], [18], and [24].

2.5 Measurement techniques

Complete information on the chemical and physical properties of plasma and the etch

process performance is important in semiconductor processing for process monitoring,

process control, fault detection, and process design. Measurement techniques can be di-

vided into invasive and non-invasive subgroups. Invasive measurements are those mea-

surements that require physical interference with the plasma, and affect the plasma

physically. Non-invasive, or remote, measurements are measurements that can be taken

without physical perturbation of the discharge. In this section, some of the more com-

mon techniques used to measure plasma properties and etch variables for both industrial

and academic applications are examined. Particular focus is given to those techniques

used in this thesis.

2.5.1 Optical emission spectroscopy

Optical emission spectroscopy (OES) measures light emitted from a plasma as a func-

tion of wavelength, time, and location, and is one of the most commonly used plasma

measurement tools [22].

In an active plasma discharge, particles are continuously undergoing the processes of

excitation from the sustaining external energy source, and relaxation, which is the loss

of the previously gained energy. As described in Section 2.1.4, the energy of the photons

released from a plasma a relaxation process is a function of the gaseous makeup of the

plasma, and the energy levels between which the electrons move. Since each species in

the plasma has an individual electron configuration, and since energy levels are quantised
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to allow only certain transitions, the luminescence from plasma is a characteristic of its

gaseous composition and the excitation levels of its molecules.

In OES, the emitted light from the plasma is examined to gather information about

the internal condition of the discharge. The light is collected from the plasma chamber

and focused by a lens onto a detector. The detector can be a photodiode, a photo-

multiplier, or an optical multichannel analyser (OMA) [22]. With photodiodes, filters

can be used to isolate single wavelengths of interest. Photomultipliers can measure

multiple wavelengths from a limited portion of the complete spectrum and are very

sensitive. Using OMAs with a charge-coupled detector (CCD), the complete spectrum

can be recorded at a regular interval to monitor plasma processes. While typical OES

devices measure the full spectrum from the plasma emissions, it is not unusual to employ

monochromators, which are devices that only measure the emission at one wavelength,

for process monitoring applications such as end point detection. A series of spectra

recorded at regular intervals during a plasma etch process are shown for example in

Figure 2.15. Shifts in the characteristic peaks of the spectra occur when the gaseous

makeup of the plasma changes, corresponding to different steps of the etch process.

Figure 2.15: Optical emission spectra collected during a multi-step plasma etch pro-
cess.

Information about the discharge is determined by comparing the wavelengths of the

light emitted from the plasma to known emission spectra from atomic and molecular

species. Typically, relative species concentrations are determined by analysing emission

intensities. With correctly calibrated spectrometers, comparisons of the intensities of

different wavelengths can be used to calculate electron temperature, density and ionisa-

tion fraction of plasmas [22].
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Unfortunately, the intensity of the emitted light depends not only on the density of

the species of interest but also on the properties of the discharge. The electron density

and electron energy distribution in the plasma alter the effectiveness of a plasma in

exciting given species. To overcome this variability and avoid complex calculations of the

electron energy distribution etc., a baseline referencing technique known as actinometry

[29] is sometimes used. Actinometry involves the addition of an inert gas such as argon

(Ar) in known quantities to the plasma. By comparing the relative intensities of the

emissions from the reference gas with the intensities of emissions from species of unknown

concentration, variations in the electron distribution function can be overcome, and the

species concentrations can be ascertained.

Figure 2.16: Downstream measurement of OES data. In some plasma etch processes,
separate discharges are ignited using the exhaust gases from the etch process for analysis
with OES techniques. This may be desirable in cases where there is no visual access to

the primary plasma discharge.

The main advantage of OES is that it is a non-invasive technique that is easily

implemented on any chamber with visual access to the plasma. In situations where visual

access to the plasma is not available, the exhaust gases from the chamber can be excited

separately to the main plasma, and OES data can be collected in the downstream manner

shown in Figure 2.16. OES provides information in both the spatial and temporal

dimensions [22]. Information is supplied in real time, allowing plasma processes to be

monitored constantly.

OES techniques, however, are not without some disadvantages and complications.

Deposition from the plasma etching process can cloud the viewing window and act as

a filter to the light emissions, thus affecting the recorded spectra. While the spectra

produced by the electron transitions in atomic species are typically made up of strongly

defined peaks that may be relatively easy to interpret, for molecular gases, OES data can

be quite complex and challenging to interpret correctly because of the many vibrational

and rotational energy levels possible. Molecular spectra is typically more spread out

and less predictable. In processing applications, chemical reactions in the plasma can
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also cause chemiluminescence, further complicating the output. Optical spectrometers

are delicate devices that can lose their calibration if physically knocked or interfered

with. Many OES devices have an unevenly spaced wavelength scale, and can also have a

non-linearity in wavelength sensitivities, requiring exact calibration curves for accurate

analysis.

The duration of time for which photons of light are accumulated in the photode-

tector is the integration time. The integration time effectively low-pass filters the light

intensity signals, where longer integration times correspond to lower bandwidths, while

also affecting the signal-to-noise ratio (SNR) of the measured light intensity. Since the

noise level is constant, increases in integration time produce a roughly proportional in-

crease in SNR. The choice of integration time is therefore a trade-off between SNR and

bandwidth of the OES signals. Since a single integration time for the photodetector

must be specified and mean intensities of the spectral lines vary with wavelength, care

must be taken to ensure that weaker spectral lines appear above the noise threshold,

while stronger lines do not saturate the photodetector. Longer integration times are

preferred for a more accurate spectral reading but as integration times increase, satura-

tion becomes an issue and the technique loses its “real-time” essence as the sample rate

decreases.

2.5.2 Laser induced fluorescence

Laser-induced fluorescence (LIF) is a non-invasive optical measurement technique used

to determine the concentration of different species within a plasma. During LIF, optical

emission from the plasma is stimulated through the introduction of laser light at specific

wavelengths to the plasma. Certain electron transitions in the plasma molecules can

be stimulated through photo-excitation by changing the wavelength of the laser light

introduced to the plasma. When the excited electrons fall back to their original positions,

the intensity of the light produced during the relaxation process can be analysed to allow

the species to be identified.

An example of this technique is the use of light with a wavelength of 226 nm to

induce a two-photon excited optical transition of atomic oxygen. The relaxation of the

artificially excited electron releases light at 844 nm [22]. This particular technique is

used to identify and measure the concentration of atomic oxygen in the plasma. As with

OES, LIF is affected by the same problems with window contamination during plasma

processing operations. LIF equipment is complex and expensive and as a result is not

typically installed in manufacturing environments, but confined to research institutions.
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2.5.3 Laser interferometry

Laser interferometry is a non-invasive technique that is used to measure the etch rate

of plasma etch processes using laser light. During laser interferometry, laser light is

directed at the wafer surface at an oblique angle, and the reflected light rays are analysed

using a detector. Typically, the thin layers of material close to the surface of the wafer

are transparent and, at each interface between the layers, the laser light is reflected,

absorbed, or transmitted. Destructive and constructive interference occurs between the

light beams reflected from the top and bottom of each layer. As the thickness of the

layer being etched changes during the etch process, the interference oscillates between

destructive and constructive interference, hence changing the intensity of the reflected

light reaching the detector. The time between the maxima and minima of the intensity

of the reflected light is related to the rate of change of the film thickness (the process

etch rate) [27]. When the layer is completely etched (the process end point), the changes

in intensity stop.

Figure 2.17 shows a schematic of laser interferometry being used to measure etch

rate. The figure shows an incident ray of light at wavelength λ travelling from air of

refractive index n1 into a layer of thickness d, with refractive index n2 at an angle θ1.

As the thickness of the layer d is changed, the interference recorded between reflected

rays 1, 2 and 3 will be altered. Rays 1 and 2 are caused by reflection between the

interfaces of air-film and film-substrate (n3) respectively, whereas ray 3 is caused by

multiple reflections within the film.

Figure 2.17: Laser interferometry [22]. Laser Interferometry is used to measure etch
rate in real time. The measurement of etch rate is achieved by analysing the beat
frequency created by the interference of reflected light from different layers of the wafer

surface.

Laser interferometry requires an abrupt interface change between the individual

layers of material on the wafer surface [22] and to ensure reflection, layers must be

sufficiently thick and transparent. Laser interferometry equipment can be used to detect
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the end point of a process as well as give in-situ etch rate measurements. On the

other hand, the etch rate is only obtained from the point of light impact on the wafer

surface, the reflected signal is less clear from rough surfaces, and as with OES, window

clouding can become an issue as chambers become conditioned. Furthermore, as device

dimensions continue to shrink, the trenches etched on wafer surfaces are becoming too

small to be penetrated by the wavelengths of light used during laser interferometry,

preventing easy measurement of etch rate.

Full-wafer interferometry is an extension to the interferometry process where a CCD

camera is used to collect reflected light from the full wafer surface over time. Unlike laser

interferometry, full-wafer interferometry uses the glow from the plasma as a light source.

Full wafer interferometry is able to measure etching uniformity across a wafer, within

etched patterns, and ARDE, if structural information within etch patterns is available

[22].

2.5.4 Ellipsometry

Ellipsometry is a popular measurement technique that relies on the polarisation changes

that occur when light is reflected from, or transmitted through, a medium. The changes

in polarisation are a function of the optical properties of the medium, its thickness, and

the wavelength and angle of incidence of the light beam relative to the surface normal

[28].

Spectroscopic ellipsometry uses multiple light beams with different wavelengths, and

is a fundamentally more accurate technique than interferometry for obtaining film thick-

ness. Typically, linearly polarised light is incident on the surface being measured and the

elliptical polarisation state of the reflected light is analysed. The wafer surface structures

are modelled, and the model parameters, including the thickness of the surface layer of

interest, are changed iteratively using an optimisation technique until the theoretical

model outputs match the measured data.

Because ellipsometry relies on an intensity ratio instead of absolute intensity mea-

surements during operation, it is relatively robust to intensity changes in the light source

and contamination of optical windows in plasma chambers.

2.5.5 Mass spectrometry

Mass spectrometry (MS) is used to determine the composition of gases. A typical mass

spectrometer setup is shown in Figure 2.18. During MS, gaseous molecules are ionised by
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electron impact and the ions produced are separated according to their mass-to-charge

ratios. Separation is achieved by accelerating the ions down a deflection pipe and using

a magnetic field to deflect the ions trajectories. Heavy, lower-charged ions are deflected

by lesser amounts than light, highly-charged ions under the force of the magnetic field.

By varying the magnetic field using an electromagnet, it is possible to focus ions with

different mass-to-charge ratios onto a detector at the end of the deflection pipe. Ions that

reach the detector create a current that is recorded to form the mass spectrometer signal.

Figure 2.19 shows an example mass spectrum resulting from an analysis of zirconium

t-butoxide with oxygen.

Low mass / charge ions

High mass / charge ions

Figure 2.18: Mass spectrometer apparatus. Gaseous molecules are ionised and then
separated according their mass-to-charge ratios through the use of a variable magnetic

field.

Figure 2.19: Typical Mass Spectrum of zirconium t-butoxide (ZTB) with O2.

MS requires substantial changes to the plasma chamber to collect ions from the

plasma. In plasma processing applications, the mass spectrometer is installed as close

to the main discharge as possible to avoid collection of by-products from wall reactions.
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Alternatively, the spectrometer can sample from the chamber exhaust to avoid disturb-

ing the plasma. However, sampling the chamber exhaust does not provide as direct a

measurement of the processing plasma as mass spectrometers that take samples from the

main discharge, because the exhaust gases contain species from the chamber walls and

there is a transport delay between the processing plasma and the point of measurement.

To fully analyse the neutrals and radicals in the plasma, they must first be separated

from the ions, before being ionised themselves. A complete understanding of the ionisa-

tion products present in the plasma is necessary for the analysis of mass spectra. MS is

often used to analyse plasmas consisting of large molecular species, for which OES data

can be complicated as a result of a multitude of spectral lines that overlap. However,

for atomic species, OES techniques are preferential to MS since the optical spectra are

simpler and hence more easily analysed than the mass spectra.

2.5.6 Langmuir probes

The most direct measurements of a plasma are obtained from probes within the plasma

chamber. A Langmuir probe is an invasive probe that can be used to determine electron

temperature, electron density, electron energy distribution function, and plasma poten-

tial. The Langmuir probe consists of a small conductor that is placed within the plasma.

The potential of the conductor is varied and the resulting current-voltage trace, or I-V

characteristic, is used to determine the properties of the plasma [22].

Langmuir probes are designed to withstand the harsh conditions within the plasma

without being destroyed. A 2–10 mm conducting tip at the end of a conducting rod

collects the current for the I-V characteristic. The conducting tip is constructed of a

material capable of withstanding high temperatures, typically tungsten or platinum.

The conducting rod is threaded through a ceramic tube to insulate all but the current-

collecting tip from the plasma. In low-temperature plasmas, Langmuir probes can oper-

ate without melting or excessive sputtering at the tip [22] but in dense, high-temperature

plasmas, the probe is only exposed to the plasma for short intervals (less than one sec-

ond) to prevent the tip from melting.

An ideal I-V characteristic for a Langmuir probe is shown in Figure 2.20. I-V

characteristics are usually shown such that the electron current to the probe is in the

+I direction.

Ion current dominates to the left of the V = 0 point on Figure 2.20, because ions

are attracted to the probe tip by the low potential. At the extreme left of the I-V
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Plasma potential

i isat

esati

Figure 2.20: Ideal I-V characteristic from a Langmuir probe. Real I-V characteristic
curves typically do not have such easily identifiable features.

characteristic, the trace levels out to the ion saturation current iisat, where the electron

current is zero, all electrons from the plasma being repelled by the strong negative charge

on the probe. The ion current is determined by the rate of ion arrival at the sheath

around the probe tip due to the random movement of ions in the plasma [21].

As the tip potential is increased, the number of electrons with enough energy to

overcome the repulsive electric field at the tip, and hence contribute to the tip current,

starts to increase. The point at which the trace crosses the V-axis is the floating potential

Vf because it is at this point that the ion and electron currents to the probe tip are equal.

To the right of Vf , electron current is dominating. The collected current rises

throughout the transition region as the probe tip becomes more positive. The shape

of the transition region can be used to derive information about the electron temper-

ature and the electron energy distribution of the plasma. When the plasma potential

Vp is reached, the trace takes a sharp turn, known as the “knee” and finishes at a rel-

atively constant electron saturation current iesat. Further increases in the potential of

the probe tip increase the energy of the electrons collected by the tip, but do not result

in an increase in the collected current.

Langmuir probes are not ideal and a number of factors can complicate probe read-

ings. The correct analysis of the I-V characteristic traces requires considerable expertise.

For example, the effective current collecting area of the tip is a factor in the correct de-

termination of the electron and ion currents. The current collecting area of the probe is

not equal to the exposed surface area of the the tip itself, but rather the surface area of

the sheath surrounding the tip. The sheath thickness at the probe tip, and hence the
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surface area of this sheath, changes with the probe potential, and affects the collection of

current from the plasma. Secondary electron emission at the tip and heating of the tip as

a result of particle collisions both cause inconsistencies in the current recorded. Damage

to the probe is possible from high energy electron and ion impact. Highly positively bi-

ased probes can draw relatively large electron currents from the plasma, perturbing the

plasma properties and distorting the measurements. Along with these complications,

in RF powered plasma processes, Langmuir probes are subject to RF interference that

distorts the I-V characteristic, requiring extra processing to recover the correct signal.

The I-V characteristic shown in Figure 2.20 is ideal in that it ignores such disturbing

processes.

For a more in-depth analysis and discussion on Langmuir probes, the interested

reader is directed to the “Plasma Diagnostics” chapter of work by Chen and Chang [22].

2.5.7 Hairpin resonator probe

The electron density in a plasma chamber can be measured using a microwave hairpin

resonator, or hairpin probe. The hairpin probe is an invasive monitoring tool intro-

duced by Stenzel [30] in the mid 1970’s to perform spatially-resolved plasma density

measurements in low-pressure plasmas.

A hairpin probe is an open-ended quarter wavelength transmission line whose reso-

nant frequency is related the dielectric constant of the medium that surrounds it. The

probe gets its name from the U-shaped resonator that resembles a hairpin, as shown

in Figure 2.21. A microwave signal source drives a small amplitude time-varying cur-

rent through a small diameter coupling loop located near the lower part of the U and

this current is swept over a range of frequencies. Energy is coupled into the U-shaped

structure, and at resonance, a standing wave occurs on the hairpin such that voltage is

maximised at the open end and minimised at the shorted end of the transmission line.

At resonance, the hairpin weakly radiates energy into the surrounding space, whereas

off resonance almost all energy incident from the current source is reflected [31]. A

well-pronounced maximum in the amplitude of the magnetic field around the hairpin

resonator occurs at the resonant frequency. The frequency at which this resonance oc-

curs is used to determine the relative permittivity, and thus the electron density, of the

plasma in which the resonator is submersed. The hairpin resonator can be directly cou-

pled to the input loop or electrically isolated. Electrically isolated floating probes are

both DC and RF isolated from ground and hence, the potential of the resonator varies

with that of the plasma. This reduces the number of corrections required to compensate

for RF interference [31].
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∼ 20mm

Quartz tube Ceramic Loop antenna

Hairpin resonator

Ceramic paste / fitting

Figure 2.21: Microwave resonator “hairpin” probe. Hairpin probes are invasive mon-
itoring tools immersed in the discharge to determine the electron density.

There are two main types of hairpin probes. Stenzel [30] describes the construction

of a transmission probe which uses two loop antennae, one for coupling current in the

hairpin, and a second for detection of the microwave signal at the resonant frequency.

Two coaxial connections are required, one for the transmission of the microwave current,

and one for the pick-up loop.

The second type of hairpin probe, described by Piejak et al. [32], is the reflection

probe. The reflection probe differs from the transmission probe in that it requires

only one coaxial feeder connection. Resonance is determined using the current reflected

from the probe. As a result, the reflection probe is simpler to build and produces less

plasma perturbation. A directional coupler between the microwave sweep source and

the input loop to the hairpin probe allows the reflected current to be monitored using

an oscilloscope. The electron density measurements from both probe types have been

shown to be equally accurate [32], and due to its simpler design and smaller bulk, a

reflection probe is used during the work described in Chapter 8 of this thesis.

As shown in Figure 2.21, typically the coaxial cable carrying the driving microwave

current is threaded through a quartz tube to isolate it from the plasma. The quartz

tube is in turn surrounded by ceramic piping to provide further protection from the

temperatures and chemicals present during etching. Platinum or tungsten wire is used

to form the hairpin resonator because of their resistance to the harsh environment inside

the etch chamber.

Operating principal

The operating principal of the hairpin probe is clearly described by Stenzel [30] and an

abbreviated description of the probe operation is given here. The resonant frequency of
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the hairpin is given by

fr =
c

4L
√
ε
, (2.29)

where c is the speed of light in m/s, L is the length of the resonator (m) (from the

bottom to the top of the U), and ε is the relative permittivity (dimensionless) of the

medium surrounding the probe. In a vacuum, ε = 1, and f0 = c/4L Hz. The relative

permittivity of a non-magnetised plasma is

ε = 1−
f2p
f2r

(2.30)

where fp is the plasma frequency given by Equation (2.17). By substituting Equation

(2.30) into Equation (2.29), the resonant frequency fr in a plasma can be expressed as

fr =
f0√

1− f2p /f2r
, (2.31)

which rearranges to

f2r = f20 + f2p . (2.32)

The electron density is related to the frequency difference between the probe resonant

frequencies with and without the plasma, as summarised by

ne =
f2r − f20

0.81
× 1010, (2.33)

where ne is the electron density (per m3), and fr and f0 are given in gigahertz [32].

2.5.8 Plasma impedance monitor

In plasma equipment, harmonics of the fundamental frequency are generated in the

power supply circuitry to the chamber because the plasma presents a non-linear load

to the RF generator and matching network. The non-linearity of the plasma arises

due to the modulation of the plasma sheaths with the applied RF power. The sheath

width is sensitive to plasma electron density and changes to the wafer surface (e.g.

etching through a layer) or chamber electrodes (e.g. coatings or erosion). Hence, the

amplitudes of the harmonics of voltage and current signals are sensitive to changes in

the bulk plasma conditions and the wafer state [33]. RF-based sensors have been used

successfully in plasma etch for both fault detection [34, 35] in etch chambers and end-

point detection for plasma processes [36, 37].

A plasma impedance monitor (PIM) is an electronic sensor that is added to the

circuitry between the matching network and the plasma electrodes or antennae. The
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PIM sensor samples the current and voltage waveforms from the RF power line and

uses dedicated hardware to perform a Fourier decomposition of these waveforms. The

sensor records the amplitudes of the current and voltage at a number of frequencies,

usually harmonics of the supplied RF signal. The phase angle between current and

voltage at each harmonic is also recorded. Typically, measurements are available at the

fundamental frequency of 13.56 MHz and modern PIM sensors can also record data for

over fifty harmonics of this frequency.

Figure 2.22: Schematic of PIM location and plasma effect on signals [33]. The non-
linear impedance presented by the plasma generates harmonics in the supplied RF

signals.

The first and fourth harmonic from voltage, current and phase supplied to the target

electrode during a five-step plasma etch process are shown in Figure 2.23. The PIM

signals vary over the course of each etch step, and vary between different steps as the

wafer state and chamber set points are changed.
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Figure 2.23: Sample PIM signals from a five-step ECR etch process.

Various electrical properties of the plasma can be calculated using the PIM mea-

surements. Power, impedance, resistance and reactance can be calculated using

P = V I cos(φ), (2.34)

Z =
V

I
, (2.35)

R =
V

I
cos(φ), (2.36)

X =
V

I
sin(φ), (2.37)

respectively, where P is power, Z is impedance, R is resistance, X is reactance, V is

voltage, I is current and φ is phase.

PIM sensors are sensitive to both physical (e.g. changes in layer) and chemical

changes (e.g. species concentrations) in the chamber [38] and have the advantage over

OES techniques that no optical access to the plasma is required. RF plasma impedance

sensors placed between the matching network and the plasma electrode provide non-

invasive information that is fast to respond to changes in the plasma for real-time

monitoring. RF data are less noisy and do not suffer from problems that hinder the

performance of OES-based techniques, such as cloudy windows, optical set ups, and

detector drift [39].
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It is important to ensure that measurements are made in high resolution because

calculations of powers are highly sensitive to small errors in phase measurements. This

sensitivity arises because the phase angle between the fundamental current and voltage

signals are often close to −90◦ for CCP sources. An expression for the sensitivity of

power to changes in phase angle can be derived as

∆P

P
/

∆φ

φ
=

∆P

∆φ

φ

P
=

∆(V I cosφ)

∆φ

φ

V I cosφ
= −V I sinφ

φ

V I cosφ
= −φ tanφ (2.38)

As phase angles tend towards −90◦, tanφ→ inf, and hence small errors in measure-

ments of φ can lead to large errors in calculations of P .

One of the disadvantages of PIM sensor measurements is that variations detected in

harmonic data as a result of phenomena in the etch chamber lack intuitive explanation.

While a complex physical relationship exists between the harmonic data recorded and

the properties of the plasma being measured, the relationship is difficult to predict, and

may only be found using black-box modelling techniques. Often the mechanisms respon-

sible for changes in measured phase and impedance during etching are not completely

understood [40]. Important correlations between the sensor data and the etch process

variables may go un-noticed without an exhaustive search of the data recorded from the

PIM sensor.
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Chapter 3

Virtual metrology techniques

Virtual metrology (VM) is performed by first collecting measurements from the process

of interest and then modelling variations in the process output using these measurements.

This chapter provides an overview of the modelling techniques that are used for the VM

modelling described in this thesis. There are seven techniques discussed that can be

broadly divided into three categories:

1. Linear regression techniques,

2. Latent variable-based techniques, and

3. Techniques with non-linear capabilities.

Least squares regression, stepwise regression, least angled regression and weighted least

squares regression are included as linear regression techniques. Principal component

regression and partial least squares regression are included as latent variable-based tech-

niques. Finally, artificial neural networks and Gaussian process regression are discussed

as modelling methods with non-linear capabilities. Due to the complexity of the pro-

cesses explored in the thesis, all of the modelling techniques used are purely empirical,

black-box methods, since, typically, the functional relationship between the VM model

input and output variables is unknown or too complex to model analytically.

3.1 Least squares regression

A multiple linear regression (MLR) model is a model that describes a linear relationship

between a number of input variables xj and a response or output variable, y, where the
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subscript j denotes the input variable number j = 1, 2, · · · p. The term “regression” was

first coined by Sir Francis Galton in 1885 [41] to describe a biological phenomenon. There

is some dispute about the discovery of the method of least squares used to determine

MLR model parameters which is described in this section. It appears that the method

was discovered independently by Legendre [42] and Gauss [43] in the early 1800’s where

both mathematicians used the method to determine the movement of celestial bodies

from astronomical observations.

A MLR model may take the form

y = β0 + β1x1 + · · ·+ βpxp + ε (3.1)

where the parameters βj , j = 0, 1, · · · p are the regression coefficients and ε represents

an (ideally random, zero mean) modelling error term. MLR models are often used as

empirical models, when the true functional relationship between y and x1, x2, · · · , xp is

unknown. When used to approximate unknown non-linear functions, linear regression

models can provide adequate approximations over specific, but usually small, ranges of

the input variables [44].

The values of βj are determined most simply using the method of least squares,

forming least squares regression (LSR) models. Suppose that n > p observations of

x1, x2, · · · , xp and y are available. Let yi denote the ith observed response and xij

denote the ith observation of input variable xj . It is assumed that the resulting error

terms εi after the model is formed have a mean value of zero, variance σ2, and are

uncorrelated. For clarity, the variance of a variable x is universally defined as

var(x) = E[(x− µ)2], (3.2)

where x is a random variable with mean µ and E is the expected value operator. Variance

is the second central moment of a variable and is often denoted using σ2, where σ is the

standard deviation of x.

For the ith observation, yi is given by

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, 2, · · · , n. (3.3)

= β0 +

p∑
j=1

βjxij + εi, i = 1, 2, · · · , n. (3.4)

β0 acts as a bias term that can generally be excluded for notational simplicity if it is

assumed that all variables are normalised to have zero mean prior to LSR modelling.
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Equation (3.3) can be written in matrix form as

y = Xβ + ε (3.5)

where

y =


y1

y2
...

yn

 , X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp



β =


β1
...

βp

 , ε =


ε1
...

εn

 .
In general, y ∈ Rn×1 is a vector of n observations of the output variable, X ∈ Rn×p is a

matrix of n observations of the p input variables, β ∈ Rp×1 is a vector of the regression

coefficients, and ε ∈ Rn×1 a vector of random errors.

It is required to find the vector of least-squares regression coefficient estimates β̂

that minimises the least-squares cost function

S(β) =
n∑
i=1

ε2i = εT ε = (y −Xβ)T (y −Xβ) (3.6)

S(β) can be expanded as

S(β) = yTy − βTXTy − yTXβ + βTXTXβ

= yTy − 2βTXTy + βTXTXβ
(3.7)

since βTXTy is a scalar, as is its transpose (βTXTy)T = yTXβ = βTXTy. For the

minimum solution to Equation (3.6), the regression parameters β must satisfy

δS

δβ

∣∣∣∣
β̂

= −2XTy + 2XTXβ = 0, (3.8)

which simplifies to

XTXβ̂ = XTy. (3.9)

Hence, the least-squares estimate of β is

β̂ = (XTX)−1XTy. (3.10)
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Equation (3.10) yields a unique solution for β̂ provided that the inverse matrix of

XTX exists [45, 46]. Models created using LSR are computationally efficient to develop

as they require only relatively low-complexity matrix operations.

The system is described as over-determined when the number of samples n outnum-

bers the number of input variables p. In this case, the rank of X is usually p given

uncorrelated input variables, and β̂ is unique. LSR experiences difficulties in situa-

tions where input variables are significantly correlated together or in under-determined

systems where n < p. In the case of correlated input variables, XTX can be close to

singular, causing difficulties in finding its inverse. If n < p, the rank of X is n and there

are an infinite number of solutions for β̂. A single solution can be chosen, but usually

this solution has poor predictive capability for any new samples collected. Often the

minimum-norm solution is chosen, that is the solution for which ‖β̂‖ is minimised.

In cases where non-linear relationships exist between the input and output variables

to be modelled, non-linear transformations can be carried out on the model input vari-

ables to form new input variables. LSR can then be employed to determine the model

parameters, and, since the model is linear in the parameters β̂, the model is still referred

to as a linear LSR model. It is typical to include squared x2
j and interaction xjxk terms

as model inputs during the development of quadratic response surface models of pro-

cesses using experimental data. The derivation for β̂ can also be extended for systems

with more than one output variable.

3.2 Weighted least squares regression

In typical least squares applications, all observations in the analysis are given equal

weighting, and the least squares algorithm minimises the sum of squared residuals, given

by Equation (3.6). In some applications, it can be shown that particular observations

used in a regression analysis are less reliable than others [47], for example if some of the

observations are taken with less precision than others. When it is reasonable to assume

that not all of the samples provide equally valuable information, weighted least squares

can be used to give each data point different amounts of influence during determination

of the model parameter estimates. A weighting scheme is introduced to the least squares

algorithm so that the sum of squared residuals to be minimised becomes

S =
n∑
i=1

wiiε
2
i = (y−Xβ)TW(y−Xβ) (3.11)
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where W ∈ Rn×n is a diagonal matrix of weights applied to each of the samples

i = 1, 2, · · · , n. Typically, these weights are chosen to be inversely proportional to the

variance of the output sample values recorded for each combination of input variables

involved in the regression.

The weights given to each sample operate relative to the weights given to the other

samples, with the absolute values of the weights being relatively unimportant. Follow-

ing the same calculations as detailed in Equations (3.6)–(3.10) for the cost function in

Equation (3.11) yields

(XTWX)βW = XTWy (3.12)

which can be solved for a unique solution of β̂W , the parameter estimates that take the

sample weights into account, as

β̂W = (XTWX)−1XTWy. (3.13)

3.3 Stepwise regression

In particular modelling applications, it may be desirable to include only a subset of the

available input variables in the regression equation. Such situations arise where there

is a pool of input variables from which to choose for regression and the input variables

that are most influential on the system output are unknown. Ideally, the best subset of

input variables that forms an accurate model is selected.

One of the disadvantages in using many or all of the input variables in the regression

equation is that the variance of the output estimates increases as the number of input

variables increases. Also, in cases with few samples and many input variables, the input

data matrix X may be under-determined. Reduction of the number of input variables in

a linear regression model is also useful to reduce the number of measurements required

in situations where the measurement of input variables is expensive [47].

One possible approach to the problem of variable-subset selection is to examine all

possible regression equations produced by all possible subsets of the input variables,

resulting in 2p total models for evaluation, where p is the number of available input

variables. While this approach may be feasible for small p, the number of models requir-

ing evaluation increases rapidly with the number of candidate input variables. Efficient

algorithms for the generation of all possible regressions have been developed, but these

procedures are typically only useful for p < 30 (for example, see [48]).
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Stepwise selection is a statistical variable selection procedure for selection of a suit-

able subset of input variables for use in a LSR model, in cases where it may not be

desirable to use all of the input variables available. The combination of stepwise selec-

tion and linear regression is stepwise regression. Stepwise regression is computationally

more efficient than examining all possible regression equations for p > 30 [45]. The

algorithm is a combination of two variable selection techniques:

1. forward selection and

2. backward elimination.

As shown in Section 3.1, the standard linear regression model is given by

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε, (3.14)

where y is the estimated output variable, x1,x2..xn are the model input variables, ε is

a random error vector, and β0, β1, · · · , βn are the model parameters.

Forward selection begins with no terms in the regression model apart from the in-

tercept term, β0. An iterative sequence is performed, where, at each iteration, each

available input variable is added to the linear regression model separately and a sta-

tistical F -test for testing significance of regression is evaluated. The statistical test is

structured such that the null hypothesis is that the regression parameter for the new

input variable would have a zero coefficient if added to the model. The input variable

having the largest partial F -statistic, given the other input variables already in the

model, is added to the model if its partial F -statistic exceeds a preselected entry level

FtoEnter. This process repeats, adding variables to the regression equation one at a time,

and the algorithm ends when there are no input variables remaining with a partial F -

statistic greater than FtoEnter, a user-defined variable, or when all of the input variables

have been added to the model.

Backward elimination operates in the opposite manner, beginning with all of the

input variables already in the model. Partial F -statistics are calculated for each input

variable as if it were the last input variable added to the model. The smallest of these

partial F -statistics is compared with a preselected value FtoRemove and, if the partial

F -statistic is less than this value, the corresponding input variable is removed from the

model. This procedure continues until the smallest partial F -statistic of the remaining

input variables is not less than the preselected cutoff FtoRemove.
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Stepwise regression starts in the same manner as forward selection with no input

variables included in the model and proceeds to add variables depending on their partial

F-statistics. However, at each iteration in stepwise regression, input variables entered

into the model during previous iterations are reassessed for removal via their partial

F -statistics. Input variables can be removed, using the same criteria as the backward

elimination algorithm, if they become redundant as a result of newer input variables

more recently added to the model. Two cutoff values are specified for the stepwise

regression algorithm, FtoEnter and FtoRemove. Stepwise selection techniques are often

used to select subsets of input variables for use in other modelling techniques that do

not perform optimally with large numbers of input variables.

The choice of the cutoff values is a user preference. Larger FtoEnter values are

selected to reduce the chance of spurious input variables entering the model, whereas

smaller FtoEnter values will allow more input variables to enter the model that can

then be assessed manually at a later stage for significance, using experience or further

modelling. F -test values are often specified in terms of percentage points or significance

levels, α, which specify the probability of adding or removing an input variable from the

regression equation in error. Draper and Smith [47] recommend settings of α = 0.05 or

α = 0.10 for both entry and exit F -tests. Other analysts [45] frequently prefer to choose

FtoEnter > FtoRemove, making it more difficult to add an input variable to the model

than to delete one.

Although the stepwise regression technique is quick to compute, easy to implement,

and readily available on popular mathematical computing packages, the technique has

attracted substantial criticism from many authors. Montgomery et al. [45] highlight

that the models produced during stepwise selection may not be the “best” models with

respect to any standard criterion, and some users may be misled into thinking that the

result is optimal. The regression equation and selected input variables should always

be examined manually by the user. Experience, professional judgement in the subject

matter field, and subjective considerations should be taken into account when analysing

the results of such automatic variable selection techniques.

3.4 Least angle regression

Least angle regression is a model selection technique that is related to the forward selec-

tion regression technique described in Section 3.3. Least angle regression is abbreviated

as LARS, where the ‘S’ arises from related techniques, lasso and stagewise regression.

The forward selection algorithm described in Section 3.3 is sometimes criticised as an
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aggressive fitting technique that can be overly hasty during selection of input variables,

perhaps eliminating useful input variables that are correlated with model input variables

variables previously chosen [49]. Such algorithms can become trapped in local optima,

failing to exploit multivariate correlations in the data, instead exploiting only univariate

correlations between one input variable and the model residual [50]. Before the presen-

tation of the LARS procedure, stagewise regression, upon which the LARS algorithm is

based, is first described.

3.4.1 Stagewise regression

Stagewise regression is a model creation technique that attempts to refine the forward

selection algorithm by taking many small iterative steps when building up the regression

function. Unlike forward selection, input variables are added slowly to the regression

model by slowly increasing the corresponding regression parameter β for each variable

of importance.

Suppose an initial estimate of ŷ = 0, and a vector of current correlations c(ŷ) is

defined such that

c(ŷ) = ĉ = XT (y − ŷ) (3.15)

where each element ĉi of ĉ is a measure of the correlation between input variable xi and

the residual vector y− ŷ. At each iteration in stagewise regression, ŷ is incremented in

the direction of the greatest current correlation

k̂ = argmax
k
‖ĉk‖ and ŷ→ ŷ + η · sign(ĉk̂) · xk̂, (3.16)

where k is used as an index for the model input variables, k̂ is the index for the model

input variable with the greatest correlation to the current residual vector, and η is a

small constant defining the step size. The step described by Equation (3.16) describes

a small increment to the value of βk̂, the model parameter for input variable k̂:

βk̂ → βk̂ + ηsign(ĉk̂). (3.17)

The stagewise algorithm differs from forward selection because instead of including

input variables at each step, the estimated regression parameters are increased in a di-

rection equiangular to each input variables correlations with the residual. For example,

if an input variable xi is being added to the regression model, and another input variable

xj becomes more correlated to the model residual after one particular iteration, the al-

gorithm switches to adding xj in the next iteration. As shown in Figure 3.1, in the space
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spanned by the input variables, this step corresponds to a movement in the direction of

xj towards the solution y (where the solution has been projected orthogonally onto the

input subspace). The drawback of stagewise regression is an increased computational

load compared to forward selection, which varies depending on the step size η taken at

each iteration. If η = ‖ĉk̂‖, Equation (3.16) describes the forward selection routine. The

LARS algorithm reduces the computational burden by taking large steps, but not as

large as forward selection.

3.4.2 The LARS algorithm

The LARS algorithm uses a simple mathematical technique to reduce the number of

iterative steps taken by the stagewise algorithm, requiring only p steps for a full solution,

where p is the number of input variables. LARS starts in a similar manner to stagewise

regression, but at each step, the ŷ vector is updated in the largest step possible in the

direction of the current input variable xj until some other input, say xk, has as much

correlation with the current residual vector as xj . At this point, LARS continues in a

direction equiangular between the two predictors xj and xk until a third variable xi is

as correlated with the residual as the current direction is. LARS then proceeds in the

direction equiangular to xi, xj , and xk [49].

Figure 3.1: The LARS algorithm depicted for p = 2 input variables. The step-like
path is a typical stagewise algorithm progression. yfs depicts the point where forward

selection algorithms proceed to upon the first iteration [49].

The progression of the LARS algorithm for a p = 2 example is shown in Figure

3.1. In Figure 3.1, y is the projection of the target vector into the linear space spanned

by x1 and x2, L(X). The algorithm starts with ŷ0 = 0, and the correlation matrix is

constructed as
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Ĉ = XT (y − ŷ0). (3.18)

From Figure 3.1, y− ŷ0 makes a smaller angle with x1 than it does with x2. Hence ŷ0

is augmented in the direction of x1, to

ŷ1 = ŷ0 + η1x1. (3.19)

In Equation (3.19), the selection of η1 differs between the forward selection, stagewise

regression, and LARS algorithms:

• Forward selection chooses η1 so that ŷ1 = yfs, the projection of y onto L(x1).

• Stagewise regression chooses η1 to be a small constant, and iterates the calculation

of C and ŷ many times.

• LARS chooses η1 so that y − ŷ1 is equally correlated with x1 and x2.

During LARS, after the first iteration, y − ŷ1 bisects the angle between x1 and x2.

The next LARS estimate will be

ŷ2 = ŷ1 + η2x2, (3.20)

where η2 is chosen to make ŷ2 = y. For examples with p > 2, η2 would be smaller,

leading to more changes in direction before a full solution is found. The LARS algorithm

is quick to compute, has a small memory requirement, and multivariate relationships

are captured in the developed model [50].

3.4.3 Training stop criteria

The stopping criteria for the LARS algorithm vary between users. The selection of

input variables can be stopped when the correlations between new input variables and

the residual vector level off, meaning that the model is not improving at each iteration. A

similar restriction can be applied to the model error at each iteration. Some users employ

metrics such as C = (εi)
2−p+2×(number of variables in model), which incorporates the

residual error at the current iteration i, along with the number of input variables in the
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model. The stopping criteria for LARS is a user preference decided before commencing

analysis.

For the analysis in this thesis, cross validation is used in an attempt to obtain the

optimal model from the LARS training procedure. Cross validation involves the use of

separate data set, the validation data set, to monitor the progress of the training pro-

cedure. The validation data set is a set of previously unseen input/output data points

that are not used in the determination of the LARS model. As model training pro-

gresses (using the training data set), the model estimation error is minimised for the

training data with successive iterations, and the model estimation error on the valida-

tion data set is monitored. Typically, model performance on the validation data set will

deteriorate with extensive training because the model loses its generalisation capabil-

ity, and becomes overly specialised to the specific variations in the training data. This

phenomenon is known as overtraining or overfitting. In computationally intensive ap-

plications, when the validation data error starts to increase, early stopping is employed,

where training is stopped prematurely, and the model is deemed optimal at the point of

the lowest validation error. Otherwise, the error performance curves are analysed after

the training procedure has completely finished, and the model state is returned to the

optimal training point. Cross validation techniques are not specific to LARS modelling,

and are employed in many of the different iterative model training procedures used in

this thesis.

Figure 3.2 depicts the model mean squared error (MSE) (see Section 3.10.1) for the

training and validation data sets for an example LARS training procedure. As more

variables are added to the LARS model, the model becomes overtrained on the training

data set, and this effect is detected by monitoring the errors produced on the validation

data set. The optimal number of variables in the model is determined by finding the

minimum value of the validation error, as exemplified in Figure 3.2.

3.5 Principal component regression

Principal component analysis (PCA) is an unsupervised data reduction technique that

extracts explanatory or latent variables from a data set using a matrix decomposition.

An unsupervised technique is one which acts without knowledge of desired outputs.

The earliest descriptions of PCA-like algorithms were given by Pearson [51] in 1901

and Hotelling [52] in 1933. Both papers adopted different approaches. Pearson concen-

trated on finding lines and planes that best fit a set of points in p-dimensional space

while Hotelling’s motivation was to find a “fundamental set of independent variables
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Figure 3.2: Typical training mean squared error (MSE) curves for LARS modelling.
The validation error curve reaches a minimum and then begins to increase as the model
becomes overtrained on the training data. The point of lowest validation error is high-

lighted in the figure.

. . . which determine the values” of the original p variables [53]. The explanatory vari-

ables extracted using PCA are called principal components by Hotelling, and are a new

set of uncorrelated variables extracted from the original data set that explain the main

sources of variance in the data set. The principal components are arranged in order of

the variance that each one explains [54].

Principal component regression (PCR) is the use of the principal components as

input variables to a linear regression model. Pearson [51] stated that PCA could be

calculated by hand for p < 4 but calculations quickly become cumbersome for systems

with more dimensions, where PCA is most useful. As such, the full potential of PCA

was not exploited until the advent of computers. Today, PCA is employed as a data

analysis tool in a wide variety of application areas. The popularity of the technique

was illustrated in the text by Jolliffe [53] by the fact that the Web of Science identified

over 2000 articles published in the two years 1999–2000 that include phrases “principal

component analysis” or “principle components analysis” in their titles or keywords. A

repeat of this search for the most recent five years (2006 - 2010) yields almost 12, 000

articles spanning over 200 different subject areas.

Before PCA is performed on a data set, some preprocessing steps are normally

taken. The mean is subtracted from each variable so that variables have zero mean
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and, typically, normalisation to unit variance is also performed when the original data

have multiple amplitude scales. Normalisation in this manner gives all variables equal

importance during analysis, but such normalisation should be applied with care if it is

known that some input variables contain significant amounts of noise.

Let X ∈ Rn×p be a data matrix made up of n samples of p variables. PCA performs

an eigenvalue decomposition of the covariance matrix XTX to decompose X as the sum

of the outer product of the score vectors ti ∈ Rn×1 and the loading vectors pi ∈ Rp×1,
plus a residual matrix E ∈ Rn×p [55]:

X = t1p1
T + t2p2

T + · · ·+ tlpl
T + E (3.21)

= TPT + E, (3.22)

where

T = [t1 t2 · · · tl],P = [p1 p2 · · ·pl], (3.23)

l is the number of principal components, T ∈ Rn×l the principal component score matrix,

and P ∈ Rp×l is the principal component loadings matrix. The principal components are

arranged in descending order, consistent with the amount of variance explained in the

original data set by each one. Each principal component loading vector pi corresponds

to an eigenvector of the covariance matrix of X and the amount of variance explained

by each principal component is proportional to the size of the corresponding eigenvalue

λi.

For PCA, the decomposition of X is such that the columns of the loading matrix P

are orthonormal to each other and the columns of the principal component matrix T

are orthogonal to each other. The first principal component is the linear combination

of the p original input variables that explains the greatest amount of variability in X

(t1 = Xp1). In the p-dimensional variable space, the loading vector p1 defines the

direction of the greatest variance in the data matrix X. Overall, the loadings represent

how the original variables x1,x2, · · · ,xp are weighted to form the principal component

scores t1, t2, · · · , tl, the principal component scores model X, and, finally, the residual E

represents the data that is left unrepresented by that model. The principal components

of X are typically calculated using the singular valued decomposition (SVD) [53] or the

non-linear iterative partial least squares (NIPALS) algorithm [56, 57].

An example of PCA applied to an artificially created, two-dimensional (p = 2) data

set is depicted in Figure 3.3. The example data set is constructed with two variables,

x1 and x2, as plotted with the grey circles on the diagram. The principal component

loadings described in the P matrix are overlayed on the diagram as two perpendicular
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vectors. The first principal component loading p1 describes the direction of greatest

variance in the data set. The diagram shows the projections of the original data points

onto the first principal component. These points are the scores on the first principal

component, represented by t1. PCR is carried out by using the score values as inputs

to a LSR model.

Figure 3.3: Principal component analysis depicted for an example data set with
p = 2 variables. The original samples are shown as grey circles, with the two principal
components overlayed for clarity. The first principal component lies along the direction
of most variance in the data set. Projections of the original data points onto this

principal component are shown as squares.

For a matrix X of rank r, r principal components can be calculated. However, the

first l (l < r) of the principal components may be sufficient to explain the majority

of the variance in the data. If l = rank(X), then E = 0, and the representation of

the data is exact using the principal components. The total variance explained by a

number of principal components for an example PCA analysis, using multivariate data

from a semiconductor etch process, is shown in Figure 3.4. Figure 3.4 demonstrates

that the total explained variance increases monotonically as more principal components

are included in the model and that more variance is described by the first principal

components compared to the later ones.

In the case of a data set with a number of highly correlated variables, PCA can be

employed as a data compression or data reduction technique, extracting a small num-

ber of orthogonal principal components that almost completely describe the variations

in the multitude of original variables. In this way, the problem of multicollinearity,
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Figure 3.4: Variance explained by each component in a PCA analysis using plasma
impedance monitoring data from a semiconductor etch process. Note that the the
principal components are arranged in order of variance explained, and the variance
explained increases monotonically with the number of principal components included

in the model.

which presents mathematical difficulties for LSR (see Section 3.1), can be avoided dur-

ing modelling exercises. However, because PCA is an unsupervised technique, where

principal components are extracted from X without reference to the output y, there is

no guarantee that the components used in the PCR model contain information suitable

for modelling. Important information can sometimes be disregarded unintentionally as

noise in the lower principal components.

One of the disadvantages of PCA is that it takes no explicit account of the ordered

nature of the data set [34]. Multi-way PCA (MWPCA) is an extension of PCA routine

that is more suited to three dimensional data that is common with process monitor-

ing applications. Data is normally arranged at first in three dimensions: wafers/units,

variables and time. In MWPCA, this array is unfolded to form a large two-dimensional

matrix upon which PCA is subsequently performed, as depicted in Figure 3.5. The

raw data can be unfolded in different ways to analyse variability along the three dimen-

sions. However, MWPCA is sometimes regarded as an inferior technique as it essentially

relies upon a two-dimensional method (PCA) to analyse multi-dimensional data. For

a comparison of MWPCA with some truly multi-dimensional methods in the area of

fault detection, namely, trilinear decomposition and parallel factor analysis, the reader

is guided to work by Wise et al. [34].
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Figure 3.5: Example of data unfolding during multi-way PCA [58]. (a) Typical
three dimensional data structure. (b) Data after unfolding prior to PCA. Data for one

complete wafer is highlighted in gray in both (a) and (b).

3.5.1 Hotelling’s T 2 statistic

At this point, it is worthwhile mentioning two statistics that are commonly employed in

conjunction with PCA, Hotelling’s T 2 statistic and the lack-of-fit statistic Q. Hotelling’s

T 2 statistic measures the variation of each sample ~xi ∈ R1×p within the PCA model.

The T 2 statistic is defined as the sum of normalised squared principal components and

is calculated for the ith sample in X [59] as

T 2
i = ~tiΛ

−1~tTi = ~xiPΛ−1PT~xTi (3.24)

where ~ti ∈ R1×l is the ith row of T, Λ ∈ Rl×l is a diagonal matrix of the eigenvalues

associated with the l principal components retained in the principal component model,

and P is the PCA loadings matrix truncated to the l components of interest. To find

the T 2 value for a sample not used to create the PCA model, ~x∗, the new sample should

first be mean centered if this step was taken with the original data and then Equation

(3.24) can be used, substituting ~x∗ for ~xi.

The T 2-statistic can be used as an indicator of movement within the principal com-

ponent space defined by the loadings P and is often employed in statistical process

control for fault detection and process monitoring [60, 61].

The T 2 statistic is also calculable from the original data distribution [62] (taking all

variables into account), and is also used often in this form for multivariate statistical

process control with performing PCA, as
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T 2
i = (~xi − ~̄x)S−1(~xi − ~̄x)T (3.25)

where ~̄x ∈ R1×p is a matrix made up of the column means of X, and S is the

covariance matrix of X such that the elements of S, sjk, are

sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k), (3.26)

where x̄j denotes the mean of column j of X.

3.5.2 Lack-of-fit Q-statistic

The Q-statistic, also known as the squared prediction error (SPE), is a measure of the

degree of variation exhibited by a sample of the input variables (a row of X) that is

unexplained by a PCA model. The Q-statistic is the sum of squares of each row of E,

and is calculated for the ith sample of the data matrix X [34] as

Qi = ~ei~e
T
i = ~xi(I−PPT )~xTi , (3.27)

where ~ei is the ith row of E, ~xi is the ith row of X, I is the p × p identity matrix

and P is the PCA loadings matrix, truncated to the l principal components of interest.

The Q-statistic indicates how well each row of X conforms to the PCA model and is a

measure of the amount of variation not captured by the model [63]. The Q-statistic can

be calculated for a new observation ~x∗ by replacing ~xi with ~x∗ in Equation (3.27) after

appropriate normalisation.

3.6 Partial least squares regression

Partial least squares (PLS) regression is a technique that combines features of principal

component analysis and multiple linear regression [64]. Although PLS is similar to

PCR (Section 3.5) in that latent variables describing the data set are extracted using

eigenvalue decompositions of the data matrices to form a process model, PLS has the

advantage of being a supervised technique, using information in the output variable(s)

to create the prediction model. Unlike simpler linear regression techniques, PLS can
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construct predictive models even in the presence of collinear input variables since it

extracts independent explanatory components from the original data prior to modelling.

The development of PLS is attributed to Wold [56] in 1966 where he applied the

technique to the social sciences. PLS regression gained popularity recently, partly due to

Wold’s son [65], who applied the technique to chemometrics (computational chemistry)

for statistical process modelling. PLS is sometimes referred to as projection to latent

structures, and has been shown to be a robust multivariate linear regression technique

for the analysis and modelling of noisy and highly correlated data [11, 59].

PLS operates in a similar manner to PCA. Component scores T and loadings P are

extracted from the input data matrix X such that X = TPT + E (Equation (3.22)).

Simultaneously, a similar decomposition is carried out on the output matrix Y such that

Y = UQT + F, (3.28)

where Y = [y1,y2 · · ·ym], Y ∈ Rn×m, is the output matrix, U ∈ Rn×h and Q ∈ Rm×h

are the Y-scores and Y-loadings respectively, F ∈ Rn×m is the Y-residual matrix, and

h is the number of principal components used in the output matrix decomposition.

In PCA, the input principal component scores are chosen to explain as much of the

input variable variance as possible, but in PLS, the input principal component scores

(in T) and output principal component scores (in U) are chosen so that the relationship

between successive pairs of principal component scores is as strong as possible [66]. This

choice of scores is the equivalent of rotating the input principal components so that they

lie in directions in the input subspace associated with high levels of variation in the

output variables.

Equations (3.22) and (3.28) are known as the outer relations of the X and Y matrices,

respectively. The inner relation, which relates the two decompositions in Equations

(3.22) and (3.28) is

U = TB, (3.29)

where B is a diagonal matrix of weights optimised to maximise the covariance between

the components in U and T. The two main algorithms used to calculate PLS models

(consisting of the P,Q, and U matrices) are the non-iterative partial least squares (NI-

PALS) algorithm [57] and the straightforward implementation of a statistically inspired

modification of the PLS method, or “SIMPLS”, algorithm [67].

Estimates from PLS models are obtained using the multivariate regression formula

Ŷ = TBQT [64]. The components T are extracted from new X values using the
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previously determined P loadings matrix. The optimal number of components to include

in PLS models can be determined by analysing the amount of variance explained by

the components and including enough components to reach a pre-specified percentage

explained variance, or through the use of cross validation techniques as described in

Section 3.4.3. For the purposes of this thesis, validation data sets are formed and cross

validation is used to optimise the number of components retained in the PLS models

used. Error performance curves for PLS model errors are similar to those shown in

Figure 3.2. The model is deemed optimal at the minimum value of the validation data

error.

3.7 Artificial neural networks

Artificial neural networks (ANNs) are networks of interconnected processing elements

called nodes or neurons that can be used for information processing, and are an attempt

to mimic the functionality and structure of the human brain. ANNs have been in

existence for several decades, and the start of their development is credited to McCulloch

and Pitts [68] who first theorised how knowledge is learned by brain neurons in 1943.

Further development was achieved in work by Hebb [69], Rosemblatt [70], and Minsky

and Papert [71] in the mid-twentieth century. With vast advances in computing power

and a number of significant breakthroughs in ANN technology, more recent decades have

seen the implementation of ANNs in classification and regression applications across a

wide variety of industries. The popularity of ANNs is born from their ability to perform

highly complex mappings on non-linear data, and the capability to generalise well enough

to learn overall trends in functional relationships from training data [28].

A number of different ANN types have been developed, distinguished by the type

of model input variables (continuous or binary), the network structure, and the type of

learning procedures employed to learn trends from data. These ANN types include:

1. Multi-layer perceptrons (MLPs),

2. Radial basis function networks (RBFs), [72]

3. Hopfield networks, [73] and

4. Kohonen’s self-organising feature maps, among others. [74]

MLP networks trained using the backpropagation (BP) algorithm are the most gen-

erally applicable and most popular networks employed in process modelling in the semi-

conductor manufacturing industry [75]. Hopfield networks and Kohonen’s self-organising
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feature maps are unsupervised methods unsuitable for input-output function approxi-

mation. Although RBF networks are suited for function approximation, they are known

to suffer from the curse of dimensionality, where a large number of neurons is required to

map high-dimensional input spaces [76]. Difficulties with high dimensional spaces arise

because RBF networks construct “local” function approximations using exponentially

decaying localised non-linearities, while MLP networks construct “global” function ap-

proximations. Although local approximations can allow RBF networks to learn some

functions faster and give better generalisation at specific regions around the training data

points than MLP networks, this is brought about at the expense of a prohibitively large

number of radial basis functions to completely map the input space adequately [77]. For

this reason, MLP networks are chosen as the network structure for the semiconductor-

etch process modelling work described in this thesis (in Chapters 6 and 7).

3.7.1 Multi-layered perceptrons

A multi-layer perceptron (MLP) neural network is an ANN where neurons are arranged

in several layers: an input layer, one or multiple hidden layers, and an output layer.

The most common model for each neuron is based on the McCulloch-Pitts neuron,

introduced in 1943 [68] and shown in Figure 3.6. Each neuron receives a number of

inputs ini, and associated with each input is a weight value wi. The neuron calculates

the weighted sum of the inputs and adds a bias value b. Inputs consist of information

provided to the neural network from external sources, or information from other neurons

in the network. The calculated sum is passed to an activation function f(.) in the

neuron to yield the neuron output. The McCulloch-Pitts neurons originally used a

threshold activation function and the perceptron neuron introduced by Rosenblatt in

1957 used a linear activation function. Multiple layer MLPs using linear activation

functions can be expressed as single layer networks, which are incapable of implementing

particular classification functions (for example the XOR function) [71]. Hence, non-linear

activation functions must be employed in the hidden layers of the network to allow a

broad range of functions to be approximated.

In an MLP network, the neurons in each layer receive weighted inputs from all neu-

rons in the preceding layer along with a constant bias value, calculate an output value

using their internal activation function, and pass their outputs to the next layer. This

feedforward neural network structure is depicted in Figure 3.7. The MLP neurons can

use linear or non-linear activation functions such as step, log-sigmoid, or tan-sigmoid

functions. The ANN outputs are limited to a small range if the output layer of the

MLP uses sigmoid activation functions and as such, networks with sigmoid activation
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Figure 3.6: McCulloch-Pitts neuron. Neuron calculates weighted sum of its inputs
along with a constant bias term b and uses an activation function f(.) to produce an

output.

functions in the output layer are often applied to classification problems. Linear activa-

tion functions are typically used in the output layer neurons to avoid limiting the ANN

output range for regression applications.

It has been shown that a feed-forward MLP network using an arbitrary number

of neurons in a single hidden layer can approximate almost any continuous function

[78, 79]. It is important to note, however, that this result is merely an existence proof

and that approximation of complex functions may require a prohibitively large number

of neurons in the hidden layer of the neural network. Cybenko [80] suspected that many

approximation problems will require astronomical numbers of terms. Such networks

would be difficult to implement and train. Zhang et al. [81] stressed in their work

that neural networks can indeed approximate virtually any non-linear mapping, but

assume that noiseless data are available in arbitrary amounts. In realistic situations

with limited amounts of noisy data, the number of the parameters in the models may

become excessively large.

Neural networks have been broadly applied in the literature to plasma processes due

to their ability to approximate non-linear functions, and have been shown to outperform

statistical techniques such as PCR, LSR, and PLS regression on some data sets [82, 83].

3.7.2 Backpropagation training

Information in an MLP is stored in the values of the weight and the bias values in

the network. The optimal weight and bias values are determined through the use of a
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Figure 3.7: Multi-layer perceptron (MLP) feed-forward neural network. This diagram
shows a neural network with one hidden layer consisting of l neurons, showing the
internal neurons, weights, and biases in the network. The input is supplied in the
vector x ∈ Rp×1 and the network calculates an output vector y ∈ Rm×1. Weights
are labelled as wh

kj , which describes the weight between the kth neuron in layer h and

the jth neuron in the previous layer. The in superscript denotes the input layer, h the
hidden layer, and y the output layer. The weight vectors between each layer are denoted
Wh and W y (for the hidden and output layers, respectively). The neuron biases are
denoted b, with a subscript for neuron number and superscript to indicate the relevant

network layer.

training data set and a learning or training procedure, after which the network can be

used to produce outputs from data not in the training data set (unseen data). For MLPs,

where specific outputs are required, learning is supervised and the training data contain

sample input-output pairs for the network to use to learn the underlying functional

relationship of the data.

The backpropagation algorithm was introduced by Rumelhart et al. [84] as a learn-

ing method for MLPs. The backpropagation algorithm begins by first initialising the

network weights, typically in a random fashion, but initialisation can also be achieved

incorporating intelligent initialisation techniques [85]. The output of the network is
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calculated and the sum squared error (SSE), defined as

SSE =
n∑
i=1

m∑
j=1

(yij − ŷij)2, (3.30)

is used as a training error measure or cost function, where n is the number of samples in

the training set, m is the number of outputs from the network, yij is the desired value for

output j at sample i, and ŷij is the estimated value for output j at sample i. After the

forward pass through the network, the error is propagated backward from the output

layer and learning occurs by minimising the SSE through modification of the weights

between each neuron [28]. This error minimisation is typically achieved via an iterative

gradient descent algorithm, where the weights are adjusted at each iteration in the

direction of decreasing SSE. A general gradient-based rule for MLP weight optimisation

is

w(m+ 1) = w(m)− υ∇(m) (3.31)

where w is a vector containing the weights and biases for the network, m and υ are the

training iteration number and the learning rate, respectively [86]. ∇(m) is the gradient

vector of the error function with respect to the weight vector w,

∇(m) =
∂SSE

∂w(m)
. (3.32)

The gradient descent method proceeds iteratively until an error minimum is found.

Two variants of the propagation algorithm are generally used. The batch backpropa-

gation algorithm calculates the mean weight update based on the gradient calculations

for all of the input-output sample in the training data. The weight update in Equation

(3.31) is then applied based on this mean gradient vector. The incremental or instan-

taneous backpropagation algorithm applies the weight update after the presentation of

each training sample to the network.

In practise, more sophisticated and computationally efficient error minimisation tech-

niques are used, such as the 2nd order gradient descent Broyden-Fletcher-Goldfarb-

Shannon (BFGS) method [87] or the Levenberg-Marquardt (LM) method [88, 89] that

interpolates between gradient descent and the Gauss-Newton optimisation algorithm.

Xia et al. [90] recently demonstrated that ANNs trained with the BFGS method con-

verged faster and resulted in less overfitting than ANNs trained using gradient descent

on a plasma etch data set.
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While the learning rate υ is constant in Equation (3.31), more advanced learning

rate schemes can also be adopted during ANN training. A common adaptation to the

gradient descent update is the introduction of a momentum term αmom to improve

convergence and overcome local minima solutions,

w(m+ 1) = w(m)− υ∇(m) + αmom∇(m− 1). (3.33)

It is common to train several networks with the same structure, initialising the

network weights randomly each time to to remove the sensitivity of the solution to the

ANN initial conditions. The network with the best performance is then retained for

future use. Typically, early stopping techniques, as described in Section 3.4.3, are used

for training ANN models, and typical ANN error curves for validation and training data

sets are similar to those seen in Figure 3.2.

3.7.3 Advantages and disadvantages

Neural networks provide a black-box model with which analysts can approximate com-

plex non-linear functions without a complete understanding of the underlying physical

relationships in the data. Although advantageous in some cases, careful selection of

model topology and inputs should be carried out to ensure the best modelling results

and parsimony of the model. In general, neural networks can be computationally de-

manding to train due to the number of iterations required for the training method to

converge and the repeated training required to avoid local minima solutions during the

optimisation of the network weights. ANNs are also relatively data-hungry compared to

other modelling techniques, typically requiring a large number of samples to develop a

useful model [91].

3.8 Gaussian process regression

The use of Gaussian processes (GPs) for regression and classification is a relatively

new concept. In 1996, Williams and Rasmussen [92] introduced the use of GPs to

high dimensional problems that have been traditionally tackled using other modelling

techniques such as neural networks and decision trees. Known in the past under the

name of ‘kriging’ in the spatial statistics community, GPs have become increasingly

popular over recent years as a modelling technique [93].
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GP modelling does not impose a specific model structure on the underlying function,

f(x), being modelled [94]. Instead, a Gaussian prior is placed on the range of possible

functions that could represent the mapping of inputs x to outputs y. The Gaussian prior

incorporates the analyst’s knowledge about the underlying function in the data where

available, and is specified using the GP covariance function. As such, GP modelling

is considered to be a non-parametric modelling technique, where the training data are

used to discover the model properties in a supervised manner. However, some basic

assumptions must be made about f(x) and these are specified in the GP covariance

function.

3.8.1 Gaussian process covariance function

For the purposes of this discussion, a one-dimensional input-output process is first as-

sumed for simplicity. A Gaussian process is specified by a mean function m(x) and

covariance function k(xi, xj) as

f(x) ∼ GP (m(x), k(xi, xj)). (3.34)

where

m(x) = E[f(x)] (3.35)

k(xi, xj) = E[(f(xi)−m(xi))(f(xj)−m(xj))] (3.36)

where the notation xi denotes any input sample from the one-dimensional input-output

process and xj is any other input sample from the same process. The Gaussian process

can be viewed as a set of random variables that have a joint multivariate Gaussian

distribution and represent the value of the function f(x) at location x. f(xi) is a

random variable corresponding to the single input-output pair {xi, yi}, where i here

denotes sample i in the data set available for modelling. For simplicity, a zero-mean

process is assumed such that

f(x1), f(x2), · · · , f(xn) ∼ N(0,Σ), (3.37)

where Σ is the process covariance matrix such that Σij gives the value of the covariance

between f(xi) and f(xj), and is a function of xi and xj , Σij = k(xi, xj).

The covariance function k(xi, xj) can be any function, provided that it generates

a positive definite covariance matrix Σ. One of the most commonly used covariance
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functions is the squared exponential (SE) covariance function, which has the form:

k(xi, xj) = ν2exp(−‖xi − xj‖
2

2l2
) (3.38)

where ν and l are hyperparameters that define the properties of the covariance function.

The SE covariance function assumes that input points that are close together in the

input space correspond to outputs that are more correlated than outputs corresponding

to input points which are further apart (if xi ' xj , k(xi, xj) tends towards its maximum,

ν2). Variations in l and ν control the smoothness of the covariance function. The

parameter ν controls the scale of the variations between points xi and xj in the output

space, while l, the length scale, determines the degree of variation possible over the input

space. Examples of the effects of different length scales for a single-input single-output

GP are shown in Figure 3.8. It can be shown that the use of a GP with a squared

exponential covariance function is equivalent to modelling with a linear combination of

an infinite number of Gaussian shaped basis functions in the input space [95].

Figure 3.8: Three possible outputs from GP models with differing length scales. The
length scale can be thought of as the required distance in the input space over which
the output values can change significantly. Hence, the GP models with shorter length

scales have more “flexibility” in the output space.

3.8.2 Optimising model hyperparameters

Because the observed data in a realistic system typically includes noise, it is assumed

that the underlying function of our data is y = f(x) + ε, where ε is a Gaussian white
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noise term with variance σ2n such that ε ∼ N(0, σ2n). A Gaussian process prior is put on

the range of possible underlying functions f(x) with covariance function as exemplified

in Equation (3.38) with unknown hyperparameters.

Hence, for this function,

y1, y2, · · · , yn ∼ N(0,K) (3.39)

K = Σ + σ2nI (3.40)

where σ2nI represents the covariance between outputs due to white noise, where I is the

n× n identity matrix, and yi = f(xi) + εi.

The aim is to use the set of training data points {xi, yi}ni=1 to find the posterior

distribution of y∗, given input x∗, that is p(y∗|x∗,xtr,ytr), where {x∗, y∗} denotes an

unseen test data point and xtr ∈ Rn×1 and ytr ∈ Rn×1 denote the input and output

training data. Before the posterior distribution of y∗ is found, the unknown hyperpa-

rameters of the covariance function in Equation (3.38), l, ν, and the noise variance σ2n,

must be optimised to suit the training data. This can be performed via a Monte Carlo

method or, more typically, via maximisation of the log marginal likelihood given by

log(p(ytr|xtr)) = −1

2
yTtrK

−1ytr −
1

2
log(|K|)− n

2
log(2π). (3.41)

The log marginal likelihood can be used to choose between different models. Equa-

tion (3.41) is made up of a combination of a data fit term, 1
2yTtrK

−1ytr that deter-

mines the success of the model at fitting the output data, a model complexity penalty
1
2 log(|K|)), and a constant term that depends on the training data set size n

2 log(2π).

Ideally, by maximising the log marginal likelihood the covariance function hyperparame-

ters to fit the training data with the least complexity that fits the input-output training

data set most accurately is found. The optimisation problem is non-convex and requires

the computation of the derivative of Equation (3.41) with respect to each of the hy-

perparameters in the covariance function. Since typical gradient descent optimisation

routines are sensitive to the initial choice of hyperparameters, multiple random initiali-

sations of the routine, are used in an attempt to ensure that the global optimal solution

is found [96]. Initial values for SE hyperparameter initialisation, v2 = 1, 1
l2

= 1
p and

σ2n = 1, where p is the number of input dimensions, are suggested by Rasmussen [97].

However, through experimentation on the data sets in this thesis, these initial values are

not found to always lead to a global optimal solution.
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The above arguments can be expanded to the multi-dimensional input case by in-

cluding the extra input dimensions in xi and xj . Although xi and xj become vectors

with multiple dimensions ~xi ∈ R1×p, ~xj ∈ R1×p, k(~xi, ~xj) remains a scalar value and

the remainder of the calculations remain the same. The GP covariance function can

be extended to many input dimensions by introducing individual hyperparameters for

each dimension. For example, in a multi-dimensional application of the SE covariance

function, a separate length scale is employed for each input dimension. During optimisa-

tion of the covariance function hyperparameters, dimensions which do not influence the

process being modelled are automatically assigned longer length scales than variables

of greater influence. The analysis of length scales to determine variable importance in

GPR is a form of variable selection, or automatic relevance determination (ARD).

3.8.3 Prediction with Gaussian process models

When the hyperparameters are optimised, the GP model can be used to predict the

distribution of y∗ for the input x∗ (for a single input dimension). The predictive dis-

tribution of y∗, p(y∗|x∗,xtr,ytr), can be shown to be Gaussian [95], with mean and

variance

µ(y∗) = kT∗K−1ytr (3.42)

σ2(y∗) = k∗∗ − kT∗K−1k∗ + σ2n (3.43)

respectively, where k∗ = [k(x∗, x1)k(x∗, x2) · · · k(x∗, xn)]T is a column vector of co-

variances between the test and training data points and k∗∗ = k(x∗, x∗) is the autoco-

variance of the test input.

In Equation (3.42), the mean prediction µ(y∗) is a linear combination of the observed

outputs ytr, where the linear weights are given by the vector kT∗K−1. The variance of

the predicted value σ2(y∗), defined in Equation 3.43, is given by the prior variance k∗∗,

which is a positive term, minus the posterior variance kT∗K−1k∗ which is also positive.

The posterior variance will be inversely proportional to the distance between the test

point and the training points in the input space, since it depends on k∗. Figure 3.9

shows an example set of input-output training data that are approximated using a GPR

model. The prediction mean and confidence intervals for test data between the training

points are shown to demonstrate that large variances are produced for test data far from

training data in the input space. The prediction variance can be interpreted as a level

of confidence in the prediction [96].
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Figure 3.9: Example prediction and 95% confidence intervals (2 × standard deviation
distance) for one dimensional input output process. The variance on predictions is
increased for areas of the input space that are further from observed training data.
Relatively simple calculation of confidence intervals on predicted outputs is possible

because predictions are given in the form of a distribution.

3.8.4 Other covariance functions

The prior beliefs of the analyst about the target data are expressed when specifying the

covariance function for a Gaussian process model. To allow a wide variety of underlying

functional behaviours to be approximated, new covariance functions can be devised or

existing ones combined to cater for different distributions of data. Useful covariance

functions include:

1. The squared exponential (SE) covariance function (as above) detailed in Equation

(3.38) is one of the most commonly used covariance functions in GP modelling

applications and has the general form (for multiple input dimensions)

kSE(~r) = ν2exp

(
−~rQ

−1~rT

2

)
(3.44)

where ~r = ‖~xi − ~xj‖, ν determines the degree of variability in the output variable

space, and Q = diag(qii),∈ Rp×p is a diagonal matrix consisting of an ARD length

scale parameter for each input dimension (q11, q22, · · · qpp = l21, l
2
2, · · · l2p). The SE

covariance function is infinitely differentiable and, therefore, is very smooth.
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2. The linear covariance function has the general form

klin(~xi, ~xj) = ~xiQ
−1~xTj (3.45)

where again Q = diag(qii) ∈ Rp×p is a diagonal matrix of ARD parameters. The

linear covariance function arises from an analysis of linear regression using GPs

[95].

3. The Matérn class of covariance functions is given by

kMatern(~r) =
21−ν

Γ(ν)

(√
2ν~r

l

)ν
Jν

(√
2ν~r

l

)
(3.46)

with positive parameters ν and l, where Jν is a modified Bessel function of order ν

and Γ(ν) is the Gamma function. The Matérn covariance functions are ν−1 times

differentiable. Hence the parameter ν can be used to allow very jagged outputs.

As ν → ∞, kMatern(~r) → kSE(~r). During regression, ν is typically set to 3/2 or

5/2 [95].

4. The rational quadratic (RQ) covariance function has the form

kRQ(~r) = ν

(
1 +

~rQ−1~rT

2%

)−%
(3.47)

with % > 0 and can be visualised as an infinite sum of squared exponential covari-

ance functions of differing length scales. The RQ covariance function hence allows

the GP to vary the length scale over the range of each input dimension. The limit

of the RQ covariance for %→∞ is the SE covariance function.

5. A periodic covariance function can be introduced by first using a nonlinear mapping

u(~x) of the input ~x and then using a different covariance function in u-space.

In the case of a one-dimensional input variable x, a mapping function u(x) =

(cos(x), sin(x)) is chosen to give a periodic random function of x. The periodic

covariance function has the general form

k(xi, xj) = exp

(
−2sin2(π

xi−xj
2 )

l2

)
(3.48)

which arises from the application of the SE covariance function in u-space.

Depending on the requirements of the data, covariance functions can be summed or

multiplied to form suitable GP models depending on the prior knowledge of the physical

system being modelled. For example, in [98], a covariance function consisting of a
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SE component, a linear component, a periodic component, and a noise component is

employed by the authors to model electricity loadings. Different models can be compared

using the marginal likelihood or prediction performance of each. A more complete

explanation of GP modelling and a discussion of additional covariance functions can be

found in [95].

3.8.5 Advantages and disadvantages of GP models

Gaussian process models have several advantages over other modelling techniques:

• Useful models can be created from training data sets with a relatively small number

of training points.

• The analyst’s prior beliefs about the data distribution can be encapsulated in the

covariance function, which is modular, and can be made up of several different

components to accommodate as much information as possible.

• The model form is not necessarily specified before training and both non-linear

and linear functions can be approximated.

• Confidence intervals on predictions can be evaluated easily as each prediction is

given in the form of a distribution. Estimates from areas in the input space with

a large amount of training data will have a small variance whereas estimates from

scarcely populated areas will be highlighted through a high variance.

Although GPs are a useful modelling tool, they are not without their disadvantages.

During training and estimation, GP models require the inversion of large covariance

matrices, the size of which are determined by the amount of training data points. Al-

though modern computers can invert matrices of up to 1000 × 1000 relatively quickly,

larger training sets may cause unacceptable computation delays. While this may be a

disadvantage in some applications, for the purposes of this thesis, smaller training sets

will be prevalent, and GP covariance matrix calculations will not pose a problem.

3.9 Model Robustness

As phrased by Jaynes [99], “One seeks data analysis methods that are robust, which

means insensitive to the exact sampling distribution of errors, . . .or are, resistant, mean-

ing that large errors in a small proportion of the data do not greatly affect the conclu-

sions.” Hence, the robustness of a modelling technique is the ability of the technique to
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produce useful models in the presence of data that does not strictly obey the mathemat-

ical assumptions made by the modelling technique. A range of assumptions are made

during the development of each of each of the modelling techniques described in Sections

3.1 – 3.8. While model robustness is difficult to quantify, and often, model assumptions

can be reasonably stretched, it is important for analysts to be aware of the limitations

of the modelling techniques being used, to check how well their data conforms to the

mathematical assumptions of the modelling technique, and to know how violations of

the assumptions can affect the modelling results. Robust versions of modelling tech-

niques can sometimes be employed to construct useful models in the presence of data

that violate modelling assumptions.

For LSR, the following assumptions are made:

• There exists a linear relationship between the input and output variables.

• The errors are independent.

• The errors are normally distributed with zero mean and constant variance (ho-

moscedasticity).

• The input variables are linearly independent, that is, the input data matrix is

non-singular.

While data fulfilling these assumptions lead to unbiased and consistent model param-

eter estimates, all of the assumptions are rarely satisfied with real-world data. Violations

of the assumptions will not completely invalidate the results of models produced, but

may weaken them. For example, violations of heteroscedastic errors in the data make

it difficult to gauge the standard deviation of the forecast errors, resulting in inaccurate

confidence intervals. The error metrics and model fit measures described in Section

3.10.1 are typically used to give a measure of the usefulness of the developed models.

Non-normally distributed variables, and variables that violate the linearity assump-

tion are typically tackled by applying transformations to form normally distributed

variables that are linearly related to the output variable(s) (for example, the Box-Cox

transform [109] is a commonly used normalising transform). However, such transforma-

tions must be completed with care as the variable units can be lost, adding difficulty to

the analysis of the regression results. Non-normality is typically identified visually (see

Section 3.10.2) or using skewness and kurtosis statistics. Because parameter estimation

is based on the minimisation of squared error, LSR techniques are particularly sensitive

to the presence of outliers in the input data. Robust regression techniques are sometimes

used to create linear models in the presence of outliers and non-normal data. A number
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of variants of robust regression exist, see M-estimation [100] or least trimmed squares

regression [101] for examples. The effectiveness of robust regression is demonstrated in

Figure 3.10.

Figure 3.10: Robust regression example. The regression line created using the robust
regression technique is much less susceptible to errors introduced by the single outlying

point at x = 10.

PCA uses the data covariance matrix to extract the principal components, and

assumes that data is linear and obeys a unimodal normal distribution. The calculations

of the mean and covariance matrices are sensitive to outliers, and hence PCA is affected

by anomalous observations. PCR suffers the same sensitivities as LSR and PCA because

it relies on both techniques. He and Wang [58] demonstrate the effect of non-linearities

and multi-modal distributions on PCA.

Although PCA assumes unimodal data when determining the directions of greatest

variance in the input data, it should be noted that the use of multi-modal data does

not invalidate the results, depending on the application. For high dimensional multi-

modal data sets, PCA is a useful tool to visualise and detect systematic variations in

covariance structures. However, the use of PCA for outlier detection in multi-modal

or non-Gaussian data will be invalid, and the use of metrics such as the Mahalanhobis

distance or the T 2 statistic will be invalid.

Robust PCR techniques typically involve a robust calculation of the sample covari-

ance matrix, followed by the use of a robust regression technique. For example, the

robust covariance matrix technique developed by Walczak and Massart [102] is based
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on ellipsoidal multivariate trimming, a technique that iteratively converges on a robust

estimate of the sample covariance matrix by systematically removing outlying points.

Filzmoser [103] implements robust PCA through the use of a robust measure of vari-

ability, the median absolute deviation, to quantify variance, followed by least median of

squares regression. Hubert and Engelen [104] propose a robust PCA method based on

projection pursuit.

Similarly, PLS algorithms such as NIPALS and SIMPLS are known to be sensitive

to outliers in the data set, and a range of techniques have been developed to robustify

the calculation of the PLS regression coefficients to the presence of outliers. González et

al. [105] provide a review of robust PLS techniques, and demonstrate that, if the sample

covariance matrix is properly robustified, further robustification of the linear regression

steps of the PLS algorithm is unnecessary.

Typically, neural network users pay less attention to assumptions than users of sta-

tistical techniques. However, ANNs are subject to similar distributional assumptions

as statistical techniques about the data being modelled. ANN training procedures typi-

cally use least square error metrics during the determination of the network weights, and

hence are highly sensitive to outliers in the error terms [106]. Outliers in the data set

can lead to a bias in the model outputs, reducing the accuracy of predictions on unseen

data. It is generally recommended to preprocess data prior to ANN modelling to remove

outliers and test for normality [107], although some research [108] has shown that, in

some applications, ANN performance is not highly sensitive to the distribution of the

data. Should non-normal data be found, it is typically advised to use a transformation

to obtain a normal distribution where possible.

A number of different approaches can be taken to develop robust ANN modelling

techniques. For example, a robust error suppressor function is proposed by Walczak [106]

to make the backpropagation learning algorithm more robust against outliers. Briegel

and Tresp [110] propose to replace the Gaussian noise model in neural network models in

favour of a more flexible noise model based on the Student-t distribution, demonstrating

increased robustness to outliers.

GPR assumes that the data being modelled is distributed as a multivariate Gaussian

distribution, with Gaussian noise on the individual points. Typically, the covariance

functions used assume homoscedastic Gaussian noise. Significant outliers in the output

variables to be modelled can cause the Gaussian process to assume artificially small

length scales, invalidating the confidence intervals produced on predictions. However,

GPR models using local covariance functions such as the SE function are relatively

robust with respect to outliers in the input data [111]. The accuracy and usefulness of
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the output predictions and confidence intervals produced by a GPR model can also be

reduced through inaccurate choice of covariance function form.

A number of approaches are taken by researchers to increase the robustness of GPR

modelling techniques. For instance, Le et al. [112] present an algorithm that assumes

heteroscedastic noise terms during GPR. Noise is treated as a random variable that is

adapted to suit different local areas of the input variable space. Snelson et al. [113]

examine non-linear transformations of the Gaussian process outputs to allow for non-

Gaussian processes and non-Gaussian noise. In work with a similar aim, Kuss et al.

[111] use a two-model approach to incorporate the existence of outliers explicitly in the

GPR framework. Sollich [114, 115] investigates improvements to the learning procedure

of GPR models to make GPR more robust to model mismatch.

The area of robust statistics and robust modelling encompasses a vast array of dif-

ferent modelling approaches that are outside the scope of this thesis. While robust

methods are not discussed further in this research, care is taken to remove gross outliers

from data prior to modelling in Chapters 6 and 7. Where applicable, model residuals

are examined for normal distributions as a metric of model suitability.

3.10 Model comparisons

A number of different metrics are employed to compare the performance of different VM

models in this thesis. These metrics focus on the error performance of the models. The

errors, or residuals, from a predictive model are defined as

εi = yi − ŷi, i = 1, 2, 3, ...n (3.49)

where yi is the actual output at observation i, and ŷi is the model estimate for observation

i. Since the residual may be viewed as the deviation between the observed value and the

predicted value, it is also a measure of the variation in the output variable not explained

by the prediction model [45].

A number of assumptions are made about the residuals for linear models fitted to

data [44]:

1. The residuals ε have zero mean.

2. The residuals ε have constant variance σ2.

3. The residuals are uncorrelated in time.
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4. The residuals are normally distributed.

Although these assumptions are generally applied to the LSR modelling case, the

analysis of residuals for model evaluation applies to any situation where a model is fitted

to observed data. The numerical values of the errors along with the validity of these

assumptions are often used to evaluate the performance of fitted models.

3.10.1 Error Metrics

A number of different methods are available to summarise the overall error performance

of a fitted model. The mean squared error (MSE) for the fitted model is given by

MSE =
1

n

n∑
i=1

ε2i . (3.50)

Squared error based metrics penalise larger errors more heavily than smaller errors. The

MSE for a model has units equal to the square of the original quantity units, and so

another metric, which is expressed in the original model output units, is the root mean

squared error (RMSE), given by

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

ε2i . (3.51)

The RMSE is more easily and more intuitively interpreted than the MSE as it is quoted

in the same units as the original output variable.

The mean absolute percentage error (MAPE) is the mean error given as a percentage

of the original value. This metric is calculated as

MAPE =
1

n

n∑
i=1

‖εi‖
‖yi‖

. (3.52)

The coefficient of determination, R2, is often employed as a measure of how well

estimated values follow the variations in the real data, or the “goodness of fit” of the

model. The R2 statistic has values between 0 and 1 and is defined as

R2 =1− SSE

SST
, where, (3.53)

SSE =

n∑
i=1

ε2i and SST =

n∑
i=1

(yi − ȳ)2, (3.54)
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with ȳ denoting the mean of the observed output values and SSE and SST representing

the sum of squared errors (see Equation (3.30)) and the total sum of squares respectively.

An R2 value of 1 indicates that the model captures the output variable variance perfectly.

Mathematically, the R2 statistic is equivalent to the square of the linear correlation

between the real and fitted values, y and ŷ.

The mean and standard deviation values of both the training data values and the

estimation errors can be useful metrics. It is generally expected to see an estimation

error mean extremely close to zero. The estimation error standard deviation is also

a significant value: if no better than the training data standard deviation, then the

model has performed no better than a simple mean estimator. A ratio of the estimation

error standard deviation to the training data standard deviation significantly below 1.0

indicates good regression performance, with a level below 0.1 often said (heuristically)

to indicate good regression. This regression ratio (or, more accurately, one minus this

ratio) is sometimes referred to as the explained variance of the model.

3.10.2 Graphical analysis

A graphical analysis of the residual signals can be useful to diagnose problems with

models, to compare the performance of different model types, and to check the validity

of the assumptions made about the residual values. For example, by examining plots of

the residual values at each observation, as shown in Figure 3.11, it can be verified that

the residuals have approximately constant variance and that the mean of the residuals

is zero. Plots of the residual against the fitted values and against the regressor variables

should also show no visually detectable correlations or patterns.

Deviations from the normal distribution can be detected using a normal probability

plot, which is a plot of the residuals ranked in numerical order against the cumulative

probability Pi = (i − 0.5)/n, i = 1, 2, · · · , n. This plot is done on normal probability

axes, on which the vertical axis scale is skewed such that the spacing of divisions becomes

larger further from the center point 0.5 towards the upper and lower points, 1 and 0

respectively [47]. If the residuals come from a normal distribution, the resulting points

will lie approximately along a straight line. Deviations from this straight line indicate

values that do not arise from a normal distribution. Figure 3.12 shows examples of

normal distribution plots that arise from normal and non-normal error distributions.

Histograms can also be used to visualise the distribution of the model residuals. An

example of a histogram with a superimposed fitted normal distribution is shown in

Figure 3.13.
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Figure 3.11: Example residuals from a linear modelling experiment. A plot of the
residuals is used to verify that the residuals have a constant variance, and a mean value
of approximately zero. Deviations from this behaviour are indicators of problems with

the model fitted.

(a) (b)

Figure 3.12: Normal probability plots for (a) normally distributed data and (b) non-
normally distributed data. Non-normal data does not form a straight line on the normal
probability plot. Note how the vertical axis scale is adjusted for these plots to suit the

normal distribution.
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Figure 3.13: Histogram of normally distributed residuals, with a superimposed fitted
normal distribution.
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Chapter 4

Virtual metrology and modelling

of plasma etch - a review

This chapter provides an overview of the research in virtual metrology (VM) and mod-

elling of plasma etch processes in semiconductor manufacture, using an extensive sample

of work from the public domain. The research is broadly divided into three sections in

this review: standalone input/output modelling, plasma simulations, and virtual metrol-

ogy modelling. The key differences between these approaches is depicted in Figure 4.1,

and each is now discussed in turn:

1. Standalone input/output models: This section examines research modelling

input/output relationships for plasma etch processes. An input/output relation-

ship is the relationship between the process input variables that are normally

specified as set points to plasma chambers (such as input gas flows or chamber

pressure) and the process output variables of interest (etch rate, electron density,

etc.). Input-output models are typically used to examine the process response to

varying inputs during process optimisation, and to estimate process outputs for

hypothetical input variable combinations not applied to the actual etch process.

Typically, standalone input/output models are operated in an open-loop manner,

using only the process input variable set points to estimate the process outputs.

2. Plasma simulation: Plasma simulation research focusses on the development

of accurate representations of the fundamental physical and chemical processes

that occur in plasmas. Such simulations are used to generate estimates of the

evolution of plasma variables in a plasma chamber for given conditions (chamber

dimensions, gas, power, pressure etc.). Simulation results are typically spatially

resolved and simulations are rarely computable in real-time due to the complexity
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Figure 4.1: Division of VM and modelling research. The literature review splits the
published research into three sections (a) Standalone input/output models, (b) plasma

simulation, and (c) virtual metrology models.

of the calculations involved. Plasma simulations are typically considered for simple

plasma discharges and rarely completed for etch processes due to the complexities

of the interactions at the wafer surface and the more complicated chemical make

up of the plasma.

3. Virtual metrology models: The third section concentrates on research using

models for plasma etch processes that estimate process output variables using data

recorded in-situ during process runs, for example optical emission spectroscopy

(OES) data. Virtual metrology (VM) models can be used to estimate inacces-

sible process variables during or after the process, reducing the requirement for

regular real metrology. Estimates from VM models, in contrast to the standalone
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input/output models that only use the process input set points as model inputs,

take the actual state of the process into account during estimation because they

rely on measurements generated by the etch process. VM models cannot be used

to generate estimates of output variables without actually running the process.

Previous measurements of the process output or state can also be used to aid the

estimation effort.

Particular focus is given to VM models, as such research is most aligned to the

contributions of this thesis. Examples of input-output research and plasma simulation

research is included for background context information, and to ensure a rounded review

of the plasma modelling literature is provided. To finish the review, a brief discussion

on fab-wide VM schemes is presented.

4.1 Standalone input/output models

The development of input-output models for semiconductor etch can be subdivided into

two main approaches, analytical modelling and empirical modelling. Research using

each of these methodologies is addressed in turn.

4.1.1 Analytical models

Analytical models are based on first-principals knowledge of the physical, chemical,

and/or electrical behaviour of plasma discharges. In this particular context, analytical

models are defined as models that relate the process inputs to the process outputs

by means of single or multiple analytical equations. The level of detail in the model

equations can be customised for each specific application. Simplifications result in lower

computational demands but are usually accompanied by reductions in the resolution and

accuracy of the model estimates. Analytically derived equations can usually be solved

relatively easily such that analytical models can be operated with modest computing

power. A number of example applications of analytical modelling are now described.

An excellent review performed by Badgwell et al. [116] in 1995 addresses analytical

modelling for a number of semiconductor manufacturing process, and contains a number

of further examples of analytical models for the etch process.
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First-principals analytical models

An example of a purely analytical, kinetic model of the plasma etching process is pro-

vided in a 1982 work by Kushner [117] describing silicon etching in CnFm/H2 and

CnFm/O2 plasmas. Kushner’s model is one of the first kinetic models of etching pro-

cesses, and considers electron-impact events, ion chemistry, neutral gas-phase reactions,

diffusion, space-charge effects, adsorption, desorption and the etching process reactions

using physical relationships. A limited set of chemical species and electron/ion reactions

are included, and rate constants for the reactions are estimated or obtained from pub-

lished literature. An analytical equation for the plasma etch rate is determined and good

agreement with experimental data is achieved. Similar work by Lieberman [118] shows

a self-consistent solution for the dynamics of a capacitive RF plasma sheath, taking

into account ion collisions. Lieberman develops analytical expressions for ion current,

sheath capacitance per unit area, ratio of the DC voltage to the peak sheath oscillating

voltage, 2nd and 3rd voltage harmonic amplitudes, and the conductance per unit area

for stochastic heating.

Analytical models for the evolution of etch profiles on wafer surfaces have been

developed by some researchers. An example of such a model is seen in work by Berg

et al. [119] where curve evolution is used to model surface development for simulated

isotropic etch processes. Extensions to the model to cater for anisotropic etch are also

suggested. Abdollahi-Alibeik et al. [120] simulate a chlorine trench etch process, taking

special consideration of ion reflection from the sidewalls of the etched trenches, and

the resulting microtrenching effects on the bottom. A microtrench is an indentation on

the bottom of etched trenches, usually close to the trench sidewalls. Simulations were

carried out using SPEEDIE (a Stanford etching and deposition profile simulator), using

an analytical calculation for particle fluxes, etching and deposition and a Monte Carlo

calculation to calculate the effect of the plasma sheath on the etching ions.

Abraham-Shrauner [121] uses first principle models to model the formation of etch

profiles at the sides of open areas on the wafer surface (half-trench profiles) for a CHF3

/ CF4 / Ar plasma in a magnetically-enhanced reactive ion etch (MERIE) reactor.

Contrary to the work by Abdollahi-Alibeik [120], Abraham-Shrauner concludes that

reflected ions from the sidewalls do not contribute significantly to microtrenching. Ana-

lytical equations are derived for the slope of the trench sidewall and the etch rates inside

the trench.

Liu and Abraham-Shrauner [122] present a theoretical plasma etching model for

contact holes etched in SiO2 with CF4/CHF3/Ar in an MERIE reactor. Analytical
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expressions are derived for ion fluxes and etch rates in etched contact holes, and the

evolution of the etch profile is then simulated using MATLAB r software.

Models exist that use fluid-solid interaction principles to model the etch rate in

plasma processing. For example, Bray and Rhinehart [123] use a mechanistic model,

along with the Hougen and Watson method for modelling gas-solid reactions [124], to

derive an expression for the etch rate of novolac-based polymers (often used as pho-

toresist) in an O2/Ar inductively coupled plasma (ICP). In [123], the model form is

determined a priori and the parameters are estimated from experimental data. The

model is based on the assumption that a limited number of etch sites (areas suitable for

chemical reactions) exist on the wafer surface. The absorbtion, desorption, and reaction

rates of etchant species are taken into account to arrive at an analytical expression for

etch rate. Similar work is carried out by Gottscho et al. [125] using the incident fluxes

of etchants, along with sticking coefficients, sputter yields and evaporation (desorption)

rates to analyse etch rate. Scanning electron microscope (SEM) images and Langmuir

probes are used to determine some important parameters for the model, allowing esti-

mation of the profiles of etched structures in aluminium and oxide etch processes.

Abrokwah et al. [126] develop a physics-based model, the parameters of which are

estimated from experimental data, that predicts etch rate in response to pattern density

effects on the wafer surface. Because pattern density influences the consumption of

etchant species, variations in pattern density across wafer surfaces lead to localised areas

of differing etch rates (see Section 2.3.4). Abrokwah et al. [126] incorporate feature-

dependent and pattern-density effects into a combined analytical model resulting in a

4.4% RMSE for etch rate estimates.

Equivalent circuit models

In the analysis of electrical signals such as voltage, current, phase, and any harmonics

of these recorded from a plasma chamber, many researchers model plasmas using an

electrical circuit that represents the electrical load presented by the plasma, otherwise

known as an equivalent circuit model. The degree of detail included in the circuit model

is dependent on the application and on the accuracy required of the model.

Early work by Van Roosmalen [127] details a method of estimating fundamental

plasma variables, such as ion bombardment energy, electron density, and ion flux density,

using the plasma impedance value that is calculated from the settings of the matching

network components. A simple equivalent circuit model of the plasma is used, where

a resistor represents the bulk plasma and capacitors represent the sheaths. However, a
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series of simplifications are made to arrive at the results. A similar equivalent circuit

model is used by Bushman et al. [128] where, again, the plasma sheaths are approxi-

mated as capacitances and the bulk plasma is represented using a resistor. The model

is used to estimate power, sheath thickness, and sheath capacitances.

An example of an equivalent circuit model with some further detail is found in

work by Kanoh et al. [37] where the equivalent circuit for a parallel-plate, capacitively-

coupled, plasma etching system is developed to determine the plasma impedance. Again,

the plasma is approximated by a conductor, and the sheaths are approximated by ca-

pacitors. The equivalent circuit elements for each of the etch chamber parts are shown

in Figure 4.2. Using a series of simplifications outlined in [37], an expression for plasma

impedance is obtained and the model estimates of impedance are found to agree with

experiment.

Figure 4.2: Schematic of plasma reactor, with equivalent circuit parameters overlaid
[37]. Vp is the plasma potential, CF , CS , CC and CW are the floating capacitances of the
powered electrode, wafer, powered-electrode sheath and wall sheath respectively. CM ,
CT and L are the capacitance values of capacitors and the inductance in the matching

network.

Colpo et al. [129] determine an equivalent circuit for an ICP source, improving upon

previously-reported more basic models that rely on a transformer model to represent the

power coupling between the plasma and powered RF antenna. The researchers simulate

the plasma physically using a conductive dummy load made of an aluminium cylinder

having the same volume as the plasma and use a Bode analysis to identify the equivalent

circuit. Two series LRC circuits are found to be associated with the impedance profiles
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found. Accurate estimates (15% error on reactance values over a wide operating range)

of plasma resistance, inductance, and conductivity are illustrated with the series LRC

circuit model, and the potential for non-invasive monitoring of other plasma variables is

highlighted.

It should be noted that equivalent circuits are not only used for characterisation of

the plasma and chamber themselves but are also used to represent stray capacitances

and impedances that can be troublesome in plasma processing equipment using high

frequency RF power. The parasitic impedances of plasma chambers increase with fre-

quency [128], so at the high frequencies in use during plasma processing (not to mention

the harmonics of these), relatively small stray capacitances and inductances become in-

fluential to the process. Sobolewski [130] uses equivalent circuit models to correct RF

measurements to their correct values in his research [131, 132]. Bushman et al. [128]

also reports on the characterisation of losses due to parasitic impedances, working on

the losses sustained from transmission lines between sensors and the electrodes.

4.1.2 Empirical models

The word empirical denotes information gained by means of observation, experience, or

experiment. Empirical data are data that are produced by an experiment or observation,

and empirical models refer to models based upon the analysis of these data, rather than

on knowledge of the underlying physical or chemical properties of the process. Because of

the inherent complexity of the plasma etch process, empirical techniques are often used

for model building, rather than attempting to describe all of the chemical, electrical, and

magnetic interactions between the constituent gases, chamber components, and wafer

surface.

Empirical input-output models can be created using data collected during produc-

tion. However, for semiconductor manufacturing, variations in the process inputs are

typically minimal during production activities, and so such models typically explore only

a small range of the input space.

Hence, it is more typical that data for empirical input/output models are gathered

from designed experiments, or factorial experiments [133]. During factorial experiments,

the process input variables are varied over a number of discrete levels to determine

their effects on the system output. Factorial experiments are designed using techniques

cumulatively known as design of experiment (DOE) techniques, whereby the principal

operating space of the process is explored and the effects of each system input variable
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on the output variables of interest are captured. Process output data are recorded for

set values of input variables and these data are then used, for example,

• to determine which input variables have most impact on output variables,

• to determine the optimal values of the input variables for a desired process output,

• to determine the optimal values of the input variables so that the effects of external

disturbances are minimised, or

• to determine an empirical model of the system so that future output estimates can

be made for different combinations of the input variables.

In the vast majority of situations, two discrete levels are chosen for each input

variable, and it is assumed that the relationships between the input and output variables

are linear. Such experiments are denoted as 2p factorial designs, where p is the number of

input variables, and they require 2p experimental runs to test all combinations of input

variable set points levels. As the number of input variables and input variable set points

increases, the number of experiments required rises exponentially, and it can become

logistically infeasible to perform large factorial experiments in cases where experiments

are expensive in terms of time or money. In cases where it is impossible to explore

all input combinations, fractional-factorial experiments are used, where some of the

input variable combinations are omitted, but, as a result, complete information about

some of the high-order effects between the input and output variables is not captured

[133]. However, typically, high-order effects are smaller than the main effects [28], and

hence, fractional-factorial experiments provide an affordable and practical alternative

to full-factorial experiments where experimentation is expensive or time consuming. A

half-fractional experiment with p factors requires 2p−1 experiments, and is denoted a

2p−1 fractional-factorial experiment.

In cases where higher-order models are required to fit a process response, more

complex experimental designs, such as a central composite design, can be used [133]. A

central composite experiment is useful for building a second-order (quadratic) model for

the process output variable without the requirement for a complete three-level factorial

experiment. Generally, central composite designs consist of a 2p factorial experiment,

with 2p axial or star runs, and a number of center runs as depicted in Figure 4.3.

For creation of plasma etch rate models, Klimecky et al. [134] attempt to maximise

the number of factorial experimental points explored during one experimental run using

in-situ etch rate measurements. The aim of this work is to reduce the cost of running

factorial experiments by reducing the number of wafers required to explore the operating
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Figure 4.3: Central composite design for p = 3 [133]. Central and axial points are
labelled.

space of the process. The in-situ measurements are performed using laser reflectometry

along with an extended Kalman filter technique developed by Vincent et al. [135].

Typically, in-situ measurements are not used, and one experimental wafer is used for

each experimental point explored.

The two most common approaches for creating input/output models based upon

factorial experiment data are linear regression and non-linear artificial neural networks.

Linear empirical modelling

Research by May et al. [136] in 1991 is an example of the type of factorial experiments

required to model a plasma etch process. In [136], a 26−1 fractional-factorial experiment

is performed using RF power, pressure, electrode spacing, CCl4 flow, He flow, and O2

flow as input variables and examining output variables etch rate, selectivity, and unifor-

mity. Nonlinearities are found in nearly all responses, and linear regression models are

produced for each of the outputs using the data from a central-composite circumscribed

Box-Wilson designed experiment. The models are then used to successfully determine

an optimised process recipe.
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Linear regression analysis can be used with data from designed experiments to pro-

duce a response surface of the process being examined. Response surface methodology

(RSM) is a general technique used in the empirical study of process input/output re-

lationships [28]. A response surface is usually presented in the form of a contour plot

showing how output variables vary in response to input variable changes, as exempli-

fied in Figure 4.4. Tan et al. [137] employ designed experiments, varying RF power,

chamber pressure, and SF6 flow rate to characterise an SF6/Ar etch process and then

stepwise regression to select variables related to etch rate, uniformity and anisotropy.

McLaughlin et al. [138, 139] vary RF power, pressure, gas composition, and flow rates in

a central-composite experimental design to collect data for models estimating etch rate,

selectivity, uniformity, and anisotropy for SiO2 etching in CF4-based plasmas. The ef-

fects of the input variables on process variables such as species emissions and DC bias are

also examined. Mozumder and Barna [140] use a 23 factorial experiment to characterise

the uniformity response of a silicon nitride etch process using chamber pressure, RF

power, and CHF3 flow. A 31-point experimental design (a “D-optimal” design) is also

used to develop a process model for etch rate, line width loss, and uniformity in response

to five process inputs comprising the RF power, chamber pressure, and three gas flow

rates. After experimentation, the model is successfully used to develop a run-to-run con-

trol system whereby recipes are specified in terms of etch performance variables. Work

by Hong et al. [141] and Himmel and May [82] include a number of further references

to work employing RSM techniques with plasma etch processes.

Non-linear empirical models

The non-linear nature of plasma processes means that linear modelling techniques can

fail to capture process variation accurately. Due to their non-linear modelling capabili-

ties, artificial neural networks (ANNs) have been adopted by many researchers for etch

process modelling, and a number of authors have shown that ANN models outperform

linear statistical techniques when creating empirical models from DOE data [82, 142–

144]. Himmel and May [82] directly compare ANNs to quadratic-based RSM techniques

when modelling etch rate, selectivity, and uniformity for polysilicon etch in CCl4/He/O2

plasma. The ANN process models exhibit significantly superior performance, with im-

provements in etch rate estimation accuracy of 38% (∼ 5% absolute error reported) and

selectivity estimation accuracy of over 62%.

A significant amount of research is performed where ANN models are developed

with data from designed experiments, followed by the use of these models to investigate

the effects of input variables on the process outputs over the experimental range. Feed-

forward multi-layer perceptron networks trained using the backpropagation algorithm
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Figure 4.4: Contour plot of polysilicon etch rate versus CCl4 flow and electrode
spacing [136] produced using linear regression and data from a designed experiment.

were reported as the most generally applicable and most popular networks employed in

semiconductor manufacturing in 1994 [75] and are still popular in the literature. For

example, Rietman et al. [144] use an ANN trained with the backpropagation algorithm

on production data from a plasma gate etch process to perform a sensitivity analysis of

the effects of various input variables on etch rate, identifying influential variables and

influential process steps for etch rate. Kim et al. [86, 145–148] from Sejong University

have conducted a number of studies where ANNs are trained on DOE data using the

backpropagation algorithm and are employed for a number of purposes:

• Modelling of etch rate, selectivity, anisotropy and critical dimension bias in a

MERIE process using Cl2, BCl3, N2 flow rates, pressure, RF power, and magnetic

field strength as input variables [145] in a 26 factorial design. Increases in accuracy
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of up to 36% for anisotropy estimates are achieved through optimisation of the

ANN activation function parameters.

• Modelling of oxide film etch rate, uniformity, and etch profile angle in a MERIE

chamber with CHF3/CF4 plasma using RF power, pressure and gas flow rates as

input variables [86, 146, 147] (errors reported for etch rate of between 3 – 6 %).

• Modelling and study of the effects of plasma density on the etch rate of silicon

carbide in a C2F8 ICP etch system using RF bias power, pressure, O2 fraction,

and gap spacing as input variables in a 25 factorial experiment [148].

More recently, Xia et al. [90] compared ANNs trained using the BP algorithm

with ANNs trained using the BFGS algorithm for modelling plasma etch rate of silicon

carbide in an ECR chamber. The microwave power, DC bias, process pressure and O2

fraction are used as input variables in a 25-point Box-Wilson central composite designed

experiment to gather data for modelling. The ANNs trained using BFGS required fewer

hidden neurons and less iterations to obtain the same training results as those trained

using BP. Further investigations using the ANN model to gain insight into the silicon

carbide etch process and to develop optimised etching recipes are presented in [149].

ANN structures apart from multi-layer perceptron ANNs are examined by different

researchers. Kim and Kim [150] employ a generalised regression neural network (GRNN)

to model profile roughness in a CHF3/CF4 silicon etch process. A GRNN is an ANN

with four layers: an input layer, a pattern layer, a summation layer, and an output layer.

GRNNs are similar to GPR models in that the network output for a specific test input is

created using a weighted sum of the training data outputs, depending on the proximity

in the input space of the test input to the training inputs. Each summation layer

neuron defines a spread, usually a Gaussian function, which determines how the training

outputs are combined. There is one pattern neuron per training point, and hence GRNN

networks suffer from the curse of dimensionality. Kim and Kim [150] collect data using a

23 factorial experiment and use a genetic algorithm (GA) to optimise the spread values

in the summation layer to enhance the predictive capability of the model, achieving

a 54.6% improvement in RMSE for estimation of profile roughness.

Kim et al. [151] use a GRNN model to estimate the discrepancy in the sidewall

bottom etch rate with respect to the center etch rate in etched trenches. Again, opti-

misation of the GRNN spread values using a GA decreased the RMSE of the models

by 32.6%. Data were collected using a 24−1 fractional-factorial experiment, varying RF

power, pressure, and two gas flow rates as input variables. Kim and Lee [142] compare

the GA-GRNN modelling technique to statistical regression models containing square
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and input variable interaction terms for estimation of silicon oxynitride etch rate, vary-

ing RF power, bias power, chamber pressure, and C2F6 flow rate in a 24 full-factorial

experiment. The GA-GRNN model yields better predictions of etch rate, demonstrating

a 52% reduction in RMSE.

Kim and Park [143] show that radial-basis function networks (RBFNs) produce su-

perior prediction results over statistical regression models for prediction of etch rate and

surface roughness of silicon carbide films in an NF3 ICP etch system. Data are gathered

using a 24 factorial experiment, varying electrode RF power, wafer bias power, chamber

pressure, and NF3 gas concentration. Etch rate estimation accuracy improvements of

40% are reported for the RBFN models over the statistical models. RBFNs are similar

to GRNNs but contain only three layers, the input layer, the pattern layer, and the

output layer. Each unit in the pattern layer represents a receptive field, which is an area

in the input space that activates the local pattern units. The pattern centers and widths

and the output weights are optimised during training to obtain the best predictions.

Kim et al. [152] use a polynomial neural network to estimate etch rate and wafer

DC bias using source power, bias power, pressure, O2 fraction, and electrode spacing

as input variables in a 25 factorial experiment. Compared to ANNs trained using BP

and a statistical regression model, the polynomial neural networks demonstrate improve-

ments in etch rate estimation accuracy of 34.3% and 55.7% respectively, requiring less

computation during training but proving difficult to optimise correctly.

4.2 Plasma simulation

Simulation of plasma processes using physics-based knowledge and validated mathemat-

ical relationships can yield accurate and complete information on discharge processes,

useful for process optimisation, troubleshooting, and chamber design. The research con-

sidered in this section provides detailed spatial and time resolved information on plasma

processes. Such simulation typically considers as much detail of the fundamental physi-

cal and chemical interactions between the components of the plasma system as possible.

The complexity of the etch process means that, correspondingly, accurate simulations

are extremely complex, and a balance between computational complexity and simulation

accuracy must be found depending on the application at hand. Only a basic overview

of plasma simulation techniques is provided here as such research is quite different from

the core subject matter of this thesis. Representative research from the literature is

referenced.
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Broadly, plasma simulation can be divided into three sections that are now examined

in turn: particle-in-cell (PIC), fluid, and hybrid models. A brief review of the main

properties of each simulation type is presented. The choice of model used by researchers

or industrial practitioners: PIC, fluid, or hybrid, depends on the application in question

and the level of detail required in the results. The correct simulation type must be chosen

for the best accuracy [153], and a thorough understanding of the limitations of each

model type, along with the assumptions and simplifications made within, is required

for this choice. In general, physics-based simulations of plasma-based manufacturing

processes are not suitable for real-time operation due to limitations in computational

power. However, the development of plasma simulations is an active area of research,

and future advances in both simulation practices and computing power may someday

enable real-time computation of such models.

4.2.1 Particle-in-cell models

Particle-in-cell simulations provide a self-consistent, fully kinetic representation of gen-

eral plasmas. PIC models take advantage of the collective behaviour of charged parti-

cles in plasma to model the kinetics of various species by simulating the behaviour of

a reduced number of computer particles (or super-particles) [153]. The kinetics of each

species in the plasma are simulated by solving fundamental physics equations (Maxwell’s

and Newton-Lorentz equations). Typically, super-particles representing charged parti-

cles such as electrons and ions are simulated, while neutral species are assumed to be

uniformly distributed throughout the plasma. The first PIC models, containing 103-104

super-particles, appeared in the 1950’s and included solutions of Coulomb’s law with

calculations of particle trajectories (requiring N2 calculations per N particles). Mod-

ern PIC simulations contain between 106 and 108 super-particles and typically include

Monte Carlo collision (MCC) schemes, accurate Coulomb collision modelling, secondary

electron emission effects, details of the external circuit impedances, noise control, and

radiation transport effects. A thorough review of the art of PIC simulations, and a study

of recent advances is provided in the work of Verboncoeur [154].

The actual implementation of a PIC simulation requires the following steps [153]:

1. Initially distribute the super particles in the simulation domain and velocity space.

2. Solve Maxwell’s equations to determine electric and magnetic fields at grid points

in the simulation domain.

3. At each time step, update the position and velocity of the particles by solving the

Newton-Lorentz equations.
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4. Incorporate collisions using the MCC scheme.

5. Incorporate the interactions between the surfaces and particles - reflection, ab-

sorption and emission.

6. Return to step number 2.

PIC models provide an accurate representation of species behaviour in a plasma,

and are often used as benchmarks for testing the results of more approximate models.

However, PIC-MCC simulations usually require a large amount of computing power,

even more so for plasmas with complex chemistry. The number of super-particles must

be kept to a sufficient level to avoid statistical under representation, numerical heating,

and noise [153]. Improved models for reactive gas mixtures, multiple excited states, and

ionisation pathways are required for increased accuracy. However, such improvements

will further increase the computational requirements of the models and it is estimated

that a multi-petaflop computer would be required for full simulation of a plasma fusion

reactor [154]. Such demanding computational requirements disqualify the use of PIC-

type models in real-time applications.

A one-dimensional PIC-MCC model is used by Krimke and Urbassek [155] to simu-

late an Argon discharge in an ECR chamber and is compared and shown to agree with

analytical theory and experimental data from previous work. Osano and Ono [156] use

an atomic-scale cellular model to simulate etch profile evolution during chlorine-based

etch processes, using a Monte Carlo calculation to simulate the transport of ions and

neutrals and placing great emphasis on plasma-surface interactions during etching. Lee

et al. [157] describe one dimensional PIC-MCC models of capacitively coupled oxygen-

argon plasmas, and find that the simulation data agree well with experimental data.

The authors also compared the model outputs to the results produced by fluid models

(discussed in the Section 4.2.2).

4.2.2 Fluid models

Fluid models describe plasmas based on the density, mean velocity, and mean energy of

constituent species [153]. These values are obtained by solving the continuity, flux, and

energy equations for each species in the plasma. The electrons, ions, and neutrals are

essentially treated as interpenetrating fluids [158]. The velocity moment of the Boltz-

mann equation provides the fluid equations, and Maxwell’s equations are coupled with

the fluid equations to obtain a self-consistent representation of the electric and magnetic

fields. The fluid equations are solved numerically after converting the set of coupled
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differential equations that make up the fluid model into a set of finite difference equa-

tions. Typically, a particular velocity distribution for each species in the plasma must

be assumed so that a closed set of fluid equations can be obtained; often, Maxwellian

energy distributions are assumed, or it is assumed that charged particles are in local

equilibrium with the electric field. However, both assumptions are approximate and are

not accurate for all circumstances [153]. The inherent approximations in the derivation

of fluid models limit their use to high pressure plasmas, hence restricting their use in

plasma processing applications. The main advantage of fluid models over PIC simula-

tions is a lower computational demand. Additionally, complicated chemistries can be

included, catering for numerous reactions.

Kim et al. [153] demonstrate that PIC modelling outperforms fluid modelling for

capacitively coupled plasmas (CCPs), due to non-local electron kinetics that cannot

be captured by fluid models assuming specific velocity distributions, playing a key role

in the discharge. Lee et al. [157] compare fluid and PIC-MCC simulation techniques

for both capacitively and inductively coupled plasmas (ICPs). It is found that a one-

dimensional PIC simulation agrees better with experimental data than two-dimensional

fluid simulations for a CCP, again due to the importance of non-local kinetics in these

plasmas.

Wilcoxin and Manousiouthakis [158] use fluid models to identify the steady state

gains between manipulated variables and the plasma properties that affect plasma etch-

ing. A simplified “argon-like” DC plasma is simulated, and the effects of pressure and

applied voltage on ion flux energy are studied. Goglides et al. [159] examine fluid modes

for a CF4 discharge, and in particular investigate the role of CFx radicals and negative

ions in etching processes.

Meeks and Won Shon [160] use a continuous-flow, well-stirred tank reactor (CSTR)

approximation to model an ICP plasma reactor. CSTR approximations are commonly

used for modelling of chemical reaction mechanisms, determining the spatially and time-

averaged species compositions in the reactor through solution of species, mass, and

electron-energy balance equations. Surface kinetics, deposition, and etch rates are also

modelled in [160]. The model has small computational demands and its results are found

to agree satisfactorily with experimental values.

A more recent example is found in work by Sfikas et al. [161], where a fluid model is

created and compared to the PIC model described by Krimke and Urbassek [155]. The

electron density, temperature, ion flux, and electrostatic field distributions are examined.

Good agreement was found with the accurate PIC-MCC simulations for all but ion flux
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density. This difference was attributed to the electrostatic field calculations close to the

chamber walls.

Sobolewski [131] uses a numerical model for the sheaths in a plasma discharge.

The one-dimensional model uses fluid equations for ion momentum conservation and is

applied to an Argon discharge in an ICP gaseous electronics conference reference cell

[162]. The model is valid for all frequencies, assumes a Maxwell-Boltzmann electron

velocity distribution and neglects secondary electron emission.

4.2.3 Hybrid PIC/fluid models

Hybrid models aim to combine the individual strengths of fluid and PIC models, ideally

incorporating the fast computation speed of fluid simulations with the accurate particle

kinetics of PIC simulations.

Variations exist in the hybrid schemes that are used. For example, Sommerer and

Kushner [163] model ions as a fluid while electrons are treated using a PIC scheme.

Conversely, Porteous and Graves [164] simulate ion energy distributions on wafer surfaces

using a PIC scheme, and consider electrons as a Maxwellion fluid. Vasenkov and Kushner

[165] use a particle module for electron-dependent properties and a fluid module to

determine kinetics of heavy particles.

Yang and Kushner [166, 167] use a two-dimensional fluid hydrodynamics simulation

that incorporates a Monte Carlo simulation for secondary electron emission to investi-

gate plasma behaviour in single frequency and dual-frequency MERIE reactors. Hoek-

stra and Kushner [168] use a hybrid model to model three-dimensional etch features

in high-density plasma chambers with a Monte Carlo scheme for modelling of feature

profiles and a hybrid plasma equipment model to determine ion and neutral angular en-

ergy distributions. The effect of the model parameters on microtrenching and sidewall

reflection are investigated.

The review by Kim et al. [153] examines the application of hybrid models to ICP

chambers, and a number of further examples of both fluid and hybrid models are refer-

enced in the review by Badgwell et al. [116].
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4.3 Virtual metrology models

VM models are models that use in-situ data collected during process operation to in-

fer information about process variables of interest that are inaccessible or difficult to

measure at the time of processing.

During the standalone input/output process modelling described in Section 4.1.1,

typically a small number of model input variables (approximately 4/5) are used, and

these input variables are predetermined before modelling commences. However, during

VM model development, large numbers of candidate variables can be available as VM

model input variables, depending on the quantity and type of in-situ sensors that are

installed on the process tool. Vast numbers of samples of each variable can also be col-

lected. As such, much of the VM research undertaken shares a number of commonalities

in terms of data preprocessing steps.

Typically, the first step in preprocessing for wafer or lot-level VM models is the

extraction of summary statistics from time series traces of variables recorded during each

individual process step, each wafer, or each lot of wafers. The summary statistics may

include statistics such as mean, variance, kurtosis, range, etc. The summarisation step

is taken to reduce the volume of data prior to VM modelling, hence easing computation

and storage demands.

Feature extraction and feature selection are further preprocessing steps typically

undertaken prior to VM modelling.

Feature extraction

Feature extraction or data reduction techniques are methods that transform available

variables such that the information contained within them is summarised by a reduced

set of new variables. Because process databases often consist of large numbers of inter-

correlated variables, the effective dimension of the space in which the variables move can

be small compared to the original number of variables. After data reduction, analysis is

performed in the reduced subspace of the new derived variables.

In general, latent variable methods such as PCA and PLS are popular in VM lit-

erature for data reduction. PCA is widely employed to reduce the dimensionality of

OES data because many of the wavelength signals are correlated in time, and hence

can be effectively represented by relatively few principal components. While PCA and

PLS are linear techniques, non-linear techniques, such as auto-encoder neural networks
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(AENNs) or kernel PCA, can also be employed. Kourti [59] provides an overview of

different latent variable methods, along with their recursive counterparts, emphasising

that process knowledge is a must in any such application, since process operators may

need to select appropriate weights and transformations for available variables.

Feature selection

Feature selection or variable selection techniques are methods that aim to find a subset of

the available variables that are most relevant to the process output and hence should be

included as VM model input variables. Performing feature selection prior to modelling

reduces problems with the curse of dimensionality and may speed up the model training

procedure.

The most popular feature selection technique is stepwise regression, which is a model

performance based technique that adds the best variable or removes the worst variable

from a LSR model on an iterative basis (see Section 3.3). Genetic algorithms [169]

(GAs) are employed by some researchers for feature selection, where the VM model

input selection is evolved over successive generations using the model error performance

as a fitness function. Feature selection can also be achieved by ranking the candidate

variables by some metric (for example, linear correlation coefficient), and discarding

those that do not achieve an adequate score.

Combinations of feature extraction and feature selection can be employed. For ex-

ample, PCA can be used to extract a number of principal component score variables

from a data set, and feature selection techniques such as stepwise regression can then be

used to select a subset of the principal components most related to the process output

variable.

Division of VM literature

The research on VM modelling is divided into four categories, depending on the aim of

the particular VM implementation:

1. Endpoint detection. Endpoint detection concerns the estimation of the time of

process step termination as an etch process proceeds.

2. Fault detection and classification. Fault detection and classification concerns the

analysis of process data to aid the timely detection and diagnosis of faulty process

operation.
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3. Plasma variable estimation. Plasma variables include fundamental properties of

the process plasma such as electron temperature, species concentrations, ion den-

sities, etc.

4. Etch process variable estimation. Etch process variables are variables that relate

to the etching performance of the chamber, such as etch rate, uniformity, etch

profile, etc.

4.3.1 Endpoint detection

Endpoint time in a plasma etch process is the time at which a layer on the surface

of a wafer is completely removed by the etching plasma. Typically, the etching layer

is not completely removed at all locations on the wafer surface at the same time, and

it is required to over-etch to some degree to ensure that all of the required material

is removed at all locations. Excessive over-etching may remove the film underneath

the target layer, possibly causing device failure and yield reduction [170]. Therefore, in

many processes it is critical to detect the endpoint time correctly and cease etching at the

appropriate moment. Endpoint detection is generally achieved by monitoring process

data during etch processes and analysing the data in real time to find change-points or

specific patterns that are known to represent endpoint events. Change-points are points

in time where the system transitions between different behaviours. Endpoint detection

falls under the umbrella definition of VM modelling in this thesis because it uses in-situ

measurements from the etch chamber to estimate the optimal endpoint, which is not

measured directly.

Optical-based endpoint detection

OES (See Section 2.5.1) is a popular technique for diagnosis and monitoring of plasma

processes. The relatively low cost and the portability of OES devices ensure that practi-

tioners favour their use in many VM applications. The data recorded by optical emission

spectrometers is rich in information about the etching plasma state and OES data are

by far the most extensively used measurements for plasma etch endpoint detection. By

tracking the optical emission of chemical species important to the etching process over

time, changes in the species concentrations that occur at endpoint can be detected. OES

data exhibit relatively fast response times to changes in plasma chemistry, and settings

such as integration times can be changed to optimise this response time along with the

signal-to-noise ratio [171].
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Processes with relatively large open areas (> 10%) for etching typically produce

clear endpoint signals in plasma optical emissions. Endpoint for such processes can

sometimes be detected by monitoring single wavelengths from the optical emission spec-

trum. For example, Dolins et al. [172] diagnose problems and detect endpoint for a

plasma etch process by monitoring variations in a single wavelength and comparing the

variations to known “normal” traces. Litvak [173] demonstrates a similar technique

using monochromators with SiO2 and polysilicon etch processes (using RIE, HDP, and

chemical downstream chambers) and use a number of signal conditioning techniques to

increase the detection accuracy, successfully detecting endpoint for wafers with open

areas as low as 0.25 %. A ratio of different channels is used to cancel background

noise effects in the OES data. However, the use of single-wavelength endpoint detection

techniques is not typical for processes with such a low open area for etching.

With increased miniaturisation of semiconductor devices, the critical dimensions of

devices are shrinking, the open areas on wafers are diminishing, and more stringent

control of plasma etch endpoint is required. Endpoint detection using single wavelength

techniques for modern plasma etch process presents several difficulties [174]:

1. Plasma etchant gases are often complex molecular compounds. Molecular optical

emission is generally more complex than atomic emission, presenting a continuous

spectrum due to the many different excitation and de-excitation states possible.

A continuous spectrum makes the identification of single wavelengths containing

endpoint information difficult.

2. Modern processes using high density plasmas often yield different spectra than

older processes due to different excitation processes in the plasma, and hence

experience and knowledge from older processes cannot be easily transferred to

newer product lines.

3. Etching of the mask materials coating the wafer corrupts the optical emission from

the process and adds strong background noise to OES data.

4. As the open area percentage of wafers gets smaller, the signal-to-noise ratio of

the endpoint signals produced during the transition from one layer to another

decreases significantly, preventing reliable endpoint detection.

As a result of these challenges, many authors use multivariate techniques examining

the full optical spectrum recorded from the plasma to detect endpoint. As previously

discussed at the start of Section 4.3, PCA is commonly used to reduce the dimensionality

of OES data. For example, White et al. [62] use PCA to compress the information
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contained in OES data from a high-density plasma, oxide etch system and then employ

a modified T 2 statistic to detect the change in behaviour that corresponds to endpoint.

An exponentially weighted moving average (EWMA) estimator is used to update the

PCA model means for normalisation of new wafer data and a Q-statistic is monitored

to identify process changes that require a re-computation of the PCA model. However,

the authors struggled to implement the endpoint system for wafers with open areas less

than 10%. Yue et al. [174] use PCA as a variable selection technique to select important

wavelengths from an array of three spectrometers operating over the UV, visible, and

IR spectral ranges. Generally, the second and third principal components were found

to contain the endpoint information, with the first capturing a linear trend in the OES

data. Important wavelengths are selected using windowed-PCA analysis of the OES data

with a thresholding technique on the principal component loadings. SEM micrographs

are used to verify that endpoint is detected correctly.

Han et al. [175] successfully demonstrate endpoint detection using the principal

components of OES data for a SiO2 etch process in CF4/CHF3/O2/Ar plasma, using

wafers with as low as 0.4 % open area. The endpoint signal could not be detected using

single wavelength techniques. To increase the speed of the algorithm for execution in real

time, the OES data is not normalised before the calculation of the principal components.

The sensitivity of the technique is further increased in [170] using a ratio of different

principal components. Further work by Han et al. in [176] uses PCA combined with

support vector machines (SVMs) to detect endpoint in the same process, demonstrating

considerable improvement over the basic PCA-based endpoint system.

Rangan et al. [177] suggest a method whereby the OES principal components

recorded during an aluminium etch process (using Cl2/BCl3 plasma) are modelled as

outputs of a two-state linear system. Jump linear filtering is used to estimate the system

states using real-time OES data, and significant shifts in the system states are found to

be indicative of etch endpoint.

Ragnoli et al. [178] introduce non-negative matrix factorisation (NMF) as an alter-

native technique for endpoint detection in OES data. NMF operates similarly to PCA in

that it determines a matrix factorisation for an input data matrix. The NMF calculation

can be constrained to produce sparse loading vectors, which is useful to quickly deter-

mine which wavelengths are most important in the etch process. The NMF components

are shown to capture the same endpoint feature as found using PCA.
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RF-based endpoint detection

After OES data, electrical data are the second most widely used for endpoint detection.

Early research using electrical measurements for endpoint detection was completed by

Ukai and Hanazawa [179] in 1979, where the plasma impedance is shown to change

appreciably at endpoint in an etch process. Fortunato [180] in 1987 focusses on the

change in reflected power during etch to detect endpoint, but notes that the technique

can only work for processes where a discontinuity in the plasma impedance occurs at

the end of the etching process.

Later, Kanoh et al. [37] investigate the relationship between the change in plasma

impedance at endpoint, the applied RF power, and the open area ratio of a SiO2 wafer,

etching with CHF3. It is found that the change in impedance increases with increased

open area and increased RF power. The use of digital filters where possible is proposed

to filter out noise and increase the SNR of the RF signals when small open area wafers

are being etched. An equivalent circuit model (see Section 4.1.1) of the plasma is used

to determine the variables most affecting impedance. Rietman et al. [181] demonstrate

the use a Fourier series created using the magnitudes of both OES and RF signals to

form characteristic “blob” shapes that can be used by operators to identify endpoint

times in an intuitive way. Koh et al. [182] perform PCA on RF harmonic signals

from a plasma process as a photoresist layer is etched, demonstrating how the principal

component scores change substantially when endpoint is reached and the underlying

layer is exposed.

Patel et al. [183] use the RF voltage and current on each electrode, the phase angle

between these two signals, and the induced DC bias on the electrodes to determine the

endpoint for SiO2, Si3, and Al etch processes in diode, triode, and magnetic multipole

enhanced triode reactor configurations. Triode reactors are RIE-type reactors where

both electrodes are powered and the chamber walls are grounded. A magnetic bucket is

added to one powered electrode in the magnetic-multipole enhanced triode configuration.

Because the endpoint detection is based on a transition from one steady-state plasma

condition to another, the first derivative of the signal recorded is used to find the change

point.

Bose et al. [184] investigate the use of plasma RF variables for endpoint detection

but conclude that optical measurements are usually more sensitive for endpoint detection

in the SF6 polysilicon etch process investigated. Some enhancements in sensitivity are

achieved using ratios of RF variables. Maynard et al. [185] train an ANN classifier

to identify endpoint situations from RF signals including reflected powers, matchbox

capacitor positions, and DC bias, from a process etching TiN. The ANN is operated
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as a binary classifier to determine whether the process has reached endpoint or not

at each sample. The classifier is trained using data that is manually classified by a

human operator using ellipsometry. The authors find the method to work only when

the electrical signals change significantly at endpoint, and the ANN is found to be as

accurate as the operator used to gather the training data.

Law et al. [186] use a remote-coupled dual-directional coupler to collect information

on the harmonics of the fundamental applied RF frequency for endpoint detection. It

is found that the harmonic containing endpoint information can be predicted through

an analysis of the frequency response of the chamber prior to processing. Successful

endpoint detection for two photoresist stripping processes and a cleaning process are

demonstrated. The relative change in RF signals for cleaning processes is generally

found to be larger than for etch processes due to the increased effective etch open area

comprising the chamber walls. In a similar study, Bonner and Clark [187] demonstrate

the use of RF-based sensors to optimise a plasma-enhanced CVD chamber cleaning pro-

cedure, arguing that RF-based sensors offer superior performance to OES-based endpoint

detection techniques.

Dewan et al. [36] use a commercial plasma impedance monitor, the Scientific Systems

Smart PIM unit, to monitor the fundamental and first four harmonic components of the

RF power signals from a SiO2 CCP etch process using SF6 plasma. The phase angle of

the first harmonic is found to be the most responsive signal to endpoint. The final value

of the phase angle is modelled as a polynomial function of the etch system inputs. By

monitoring the actual phase angle signal in real time, endpoint is successfully detected

when the signal reaches the modelled value.

Mass spectrometric-based endpoint detection

A less commonly applied technique for endpoint detection, most likely due to the bulky

equipment required, is mass spectrometry (MS). Characteristic endpoint signals appear

in MS signals when the chemical constituents of the etching plasma change upon break-

through to a new layer. Thomas III et al. [171] perform an analysis of the endpoint

response times for a single-wavelength OES and a MS technique. The OES signal is

found to respond in 0.2 seconds, whereas the MS signal responded in 0.9 seconds. Be-

cause the MS equipment is installed downstream from the plasma process, the response

time is limited by a the transit time of the etch products from the wafer surface to the

detector. Li et al. [188] compare a downstream and a direct line-of-sight mass spec-

trometer and show that the downstream MS can be used for endpoint detection, yielding
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similar variations in signal intensities at endpoint as single-wavelength OES for a rela-

tively large open area of 26 %. Line-of-sight MS is tested but deemed too sophisticated

for practical implementation in an industrial environment.

For further references concerning endpoint detection outside of the scope of this

thesis, the reader is guided to work by Ma [189] and Goodlin [190].

4.3.2 Fault detection and classification

Fault detection and classification (FDC) is the use of on-line data from a manufacturing

process to warn operators of errors in production (fault detection) and identify the most

likely fault type (fault classification). FDC may include detection of sensor failure,

equipment failure, presence of unusual disturbances, and any other situation that does

not correspond to routine operation [59]. FDC is essentially a use for VM, whereby

process variables are analysed to extract meaningful variables using VM techniques, and

then classification or further modelling techniques are used to detect and identify faults.

FDC research is discussed in this section because the application of FDC techniques to

a process typically involves the use of similar data sources, processing and modelling

techniques to VM applications. This subsection presents a representative sample of

published work in the area of FDC for plasma-etch processes.

A common approach for monitoring semiconductor manufacturing processes is to

apply statistical processing control (SPC) rules to important variables. The central

idea in SPC is that controlled processes operate in the presence of only chance causes

of variation. Significant deviations in monitored variables that cannot be assigned to

chance signify that the process is operating out of control. A cause-and-effect rela-

tionship between the monitored variables and the process quality is assumed. Control

charts are used to monitor each variable, and it is assumed that the monitored variables

are identically, independently and normally distributed (IIND). Because semiconductor

manufacturing processes typically generate large numbers of inter-correlated variables

for process monitoring, faulty conditions can result in alarms on several SPC charts if

univariate SPC is applied to each one individually. Also, as the number of monitored

variables increases, the chances of false alarms also increases. Multivariate SPC is used

to reduce the number of control charts and the number of false alarms in such situations,

and also take interactions between variables into account if required. Multivariate SPC

involves the calculation of multivariate statistics such as Hotelling’s T 2 statistic using

all or a subset of the monitored variables and the applications of univariate SPC rules

to the multivariate statistic. In this manner, the process can be monitored using a sin-

gle control chart. Data preprocessing and variable selection is typically carried out to
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ensure that the variables are IIND before carrying out multivariate SPC in this manner.

Work by May and Spanos [28] provides a broad overview of the application of SPC in

semiconductor production.

Optical-based FDC

PCA is a popular technique for data reduction prior to performing FDC on multivari-

ate manufacturing processes. Yue et al. [60] propose to use multiway PCA with the

T 2 statistic and Q-statistic on OES data to detect faulty conditions on a contact etch

process with 1 − 2% open area. The authors use a “sphere” threshold technique on

principal component loadings to select important variables from a single spectrometer.

Fault classification is performed by examining principal component score plots and com-

paring the directions of faulty wafers in the principal component space to known faulty

conditions. It is suggested that a library of faulty principal component directions can be

stored to aid future fault identification, similar to techniques employed in chemometrics

research [191]. Han et al. [170] also propose a fault detection algorithm based on the

principal components of OES data for a BCl3/Cl2 etch process. The researchers com-

pare the principal component scores at each sample time for processing wafers to the

principal components scores of previously processed wafers. Abnormal changes in the

principal components are used to detect faulty conditions.

Hong and May [192] propose the use of multi-layer perceptron (MLP) ANNs with

OES and MS data as model input variables to estimate the process input variables for

the purposes of fault detection in an etch process. PCA is used as a variable selection

technique for the OES data and variable selection is carried out on the MS data using

process knowledge and manual selection of atomic masses. The ANNs are trained to

estimate the process inputs, RF power, pressure, and gas flow, and faults are detected

by identifying deviations between the estimated process inputs and the actual process

inputs. Satisfactory performance is recorded for detection of faults that are artificially

induced by introducing 10% deviations in input variables. Similar work is described by

Shadmer et al. [193] where ANNs are shown to outperform linear techniques in estimat-

ing the process inputs using OES and MS measurements from a CHF3/O2 plasma with

no wafer present. Again, faults are detected and root causes are isolated by analysing

discrepancies between the estimated and actual process inputs.

Sarmiento et al. [194] employ one-class SVMs to detect faults in RIE processes using

PCA-reduced OES data. The one-class SVM system successfully identified all artificially

excited faults in RF power using 35 selected wavelengths (using PCA) for an etch process.

It is argued that the use of ANNs for fault detection requires large amounts of faulty
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data to successfully train a network, whereas the one-class SVM technique requires only

data collected during normal equipment operation.

RF-based FDC

Guo and Spanos et al. [35, 195] demonstrate the use of RF-based measurements to

monitor a plasma etch chamber, collecting five process variables - the position of the

RF tune vane and RF load coil in the electrical match unit, the RF phase error, the

plasma impedance, and the peak-to-peak voltage across the electrodes. The T 2 statistic

is calculated from these variables and monitored using SPC control charts, successfully

detecting artificially induced faulty conditions. To ensure the variables are IIND prior

to SPC, auto-regressive models are first fit to the process data, and the T 2 statistic is

calculated using the model residual signals.

An adaptive T 2 statistic, based on four RF-based measurements along with temper-

ature and pressure measurements, is employed by Spitzlsperger et al. [61] to monitor a

drifting plasma etch process. The adaptive technique is employed to reduce the number

of false alarms caused by slow drifts in the covariance structure of the process variables

as a result of chamber conditioning and process drift. The adaptation is implemented

by updating the mean and covariance values for the monitored variables using an expo-

nentially weighted moving average (EWMA) technique (based on a similar method used

by Chamness et al. [196]). Domain knowledge is incorporated to distinguish between

normally drifting variables and drifts that indicate faults.

Wise et al. [34] compare PCA, multiway PCA, trilinear decomposition, and parallel

factor analysis for fault detection on an Al etch process with BCl3/Cl2 plasma using

RF, OES, and machine state variables. Machine state variables include data that are

measured typically directly from the plasma chamber, for example, chamber pressure,

temperature, gas flow rates, power set points etc. Local models, built on subsets of

data, and global models, incorporating more data and hence more process variation, are

trained. Local models were found to capture more faults than global models in the tests

performed. The best combination of variables for FDC is found to be machine state

information along with RF signals. For the data set investigated, parallel factor analysis

is found to perform marginally better than PCA and trilinear decomposition.

Chen et al. [197] use RF sensors and a comprehensive fault library to diagnose

faulty conditions, using pattern matching software to compare signals from each wafer

to the library of faulty signals. However, the fault library must be constructed using

a DOE where faults are introduced manually, and this library may be prohibitively
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large. Law and Macgearailt [198] use ratios of reflected and incident powers from RF

and microwave sources in an ECR plasma etch chamber to characterise normal etching

operations and aid fault detection. K-means clustering is used to define data clusters

representing normal operation, and power source faults are detected when sensor data

are observed that do not fit into the predefined clusters.

Machine state-based FDC

The monitoring of machine state variables is perhaps the most cost effective method of

process monitoring, considering that no additional sensors beyond the original processing

tool sensors are required. Successful FDC schemes using machine state variables have

been implemented by a number of authors.

For example, Imai [199] uses a PLS model with various machine state variables

as inputs to estimate changes in plasma electron density that are indicative of stray

contaminant particles in the etch chamber. Stray particles destroy integrated circuitry

when they come in contact with wafer surfaces. The particles acquire a negative charge

be collecting free electrons from the plasma, resulting in a detectable change in the overall

plasma electron density in the chamber. In [199], such changes in electron density are

reflected in the recorded machine state variables, and a PLS model is used to estimate

the number of particles present. The authors report R2 values of 0.75 for the model

estimates. Potential fault occurrences are deduced from the particle predictions.

Chang [200] uses SPC techniques and machine state variables to detect fault sit-

uations. Similar to the work in [35], the IIND residuals from a process model are

monitored for deviations from normal operations. However, instead of more typical lin-

ear time-series modelling, Chang [200] uses radial basis function (RBF) neural networks

to develop time-series models of plasma etch process output variations. The RBF net-

works operate on a sliding-window basis to accommodate process drift. The models are

trained to estimate the current time sample (in seconds) of the running process using

the chamber state variables as inputs.

Gallagher and Wise [63] demonstrate how static PCA models are not robust to pro-

cess drift, maintenance, cleaning, and equipment installation events, yielding false alarms

after such events occur. To maintain the validity of PCA models over many wafer etch

cycles, and hence avoid false alarms from FDC systems as monitored variables drift out-

side of preset limits, several researchers employ adaptive or recursive PCA techniques.

EWMA techniques are employed in [63] to update the mean and covariances of PCA

models to cater for process drifts and shifts and these adaptive models are shown to
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remain robust for over three months of production data. However, only 8 of 21 induced

faults are identified. Chamness [196] uses a similar EWMA update scheme for the mean

values of a PCA model and an exact recursive standard deviation update to keep PCA

models robust over 3000 wafers from a plasma etch process. Chamness uses 21 differ-

ent chamber state variables including pressure, matching network component positions,

temperatures at the electrodes and chamber walls, and coolant gas flows. Errors are

detected using a threshold on the Q-statistic values, and variable contribution plots for

the Q-statistic are used to classify faults once detected.

Many semiconductor manufacturing processes violate the PCA assumptions of lin-

earity, Guassianity, and uni-modality, posing difficulties for PCA-based FDC techniques

and resulting in misleading T 2 and Q statistic values. He and Wang [58] propose a

fault detection technique based on the k-nearest neighbours (kNN) method of clustering

and demonstrate successful fault detection for the Al stack etch process investigated by

Wise et al. [34]. The stack etch process is both non-linear and multi-modal, and 19

machine state variables are used for FDC. The technique is based upon the premise

that normal production data from wafers will be numerically close together and form

clusters that faulty data will not fit into. The kNN technique is shown to outperform

T 2 and Q-statistic based fault detection schemes. The computational complexity and

storage requirements of the kNN fault detection technique are improved in [201] where

PCA is used first as a data reduction technique and faults are then detected using kNN

clustering in the reduced principal component space.

A number of authors also use independent component analysis (ICA) for data pre-

processing prior to fault detection. ICA is a multivariate statistical tool that can extract

statistically independent components from observed data [202]. ICA has the advantage

over PCA when used for FDC since ICA does not assume a Gaussian distribution of

data. However, the determination of how many independent components to extract from

the process data is non-trivial, the extracted independent components are randomly or-

dered, and the algorithm results are dependent on initial conditions, often requiring

several executions to determine optimal solutions. Lee et al. [203] propose a technique

to address these issues and demonstrate the effectiveness of the technique on industrial

data sets, including the semiconductor etch machine state variables examined by Wise

et al. [34]. The proposed technique is shown to be more effective than PCA for fault

detection for the data set used. Similar to the research in [34], global and local models

are investigated, and the best fault detection accuracy is achieved using the local models.

Ge and Song [204] propose an adaptive PCA-based method that is claimed to out-

perform the PCA-kNN scheme of He et al. [201], and uses simpler calculations than the

ICA method of Lee et al. [203]. A monitoring statistic, based on a one class support
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vector data description (similar to that previously used in [194]), is developed and shown

to outperform the kNN-based fault detection technique for the same etch process and

machine state variables as in [34].

4.3.3 Estimation of plasma variables

A number of researchers focus on the estimation of plasma variables from real-time

measurements. Such research is not always concerned with plasma etch processes alone,

but rather on plasma discharges in general.

Optical-based plasma variable estimation

OES data can be used to gain a measure of species densities in plasma through the use

of actinometry techniques [29]. Actinometry, as mentioned in Section 2.5.1, involves the

addition of a known quantity of an inert gas to a plasma and the use of the relative

emission intensities of the added gas to determine the concentration of other species of

interest. Hanish et al. [205] demonstrate the use of actinometry techniques to estimate

atomic chlorine concentration in a plasma for control purposes.

Malyshev and Donnelly [206, 207] develop a similar technique to actinometry, trace-

rare-gas OES (TRG-OES), in which the emission lines from small concentrations of five

inert gases, He, Ne, Ar, Kr, and Xe, are used to determine plasma electron temperatures

and in some cases plasma electron density. The results from TRG-OES are found to agree

with Langmuir probe measurements for low pressure plasmas, with accuracy reducing at

higher pressures (> 5 mTorr) due to variations in the electron energy density function.

Hence, TRG-OES can be used as a non-intrusive alternative to Langmuir probes for

low-pressure plasmas. The application of the technique for silicon-based semiconductor

processing is considered in [208], and a vertically movable OES device is employed in [209]

using TRG-OES to obtain spatially resolved measurements of electron temperatures,

chlorine density, and approximate electron-energy distribution functions in a plasma

etch processing tool.

RF-based plasma variable estimation

Electrical measurements from RF systems are also used as inputs to VM models, relating

waveforms for voltage, current, and phase to plasma variables. The advantage of these

techniques is that, similar to OES, typically no invasive hardware is required, allowing
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VM without contamination risks. Research by Sobolewski exemplifies this area. An

investigation into three methods to determine ion current from RF current and voltage

measurements is presented by Sobolweski in [210]:

1. Power/voltage method: This method entails the division of measured RF power

by the measured RF voltage to determine ion current. However, the assumptions

of non-sinusoidal sheath voltages, zero time variances in ion current, along with

other simplifications lead to relatively inaccurate results.

2. Analytical method: This method uses an analytical equation for the current-

voltage relation of the plasma sheath (described in [211]) to determine ion current.

Again, assumptions in the model, especially the exclusion of time variation in the

ion current, lead to errors in this method, which are more pronounced at higher

frequencies.

3. Numerical sheath method: This method uses a numerical model for the plasma

sheath as described in [131]. The sheath is modelled in one dimension using fluid

equations for the ion dynamics (see Section 4.2.2). The model includes time-

dependent ion current and ion density effects and simulates the ground sheath

and the sheath adjacent to the RF biased electrode simultaneously. The model

makes approximations to allow fast computation and hence real-time application

to plasma chambers.

Sobolewski produced several publications detailing the use of the numerical sheath

model described in [131], demonstrating the use of the model to monitor sheath voltages

and ion energies in generic plasma [212] and ion current drift due to deposition in etch

chambers [132]. A more recent work investigates the real-time, non-invasive monitoring

of ion energy and ion current at a wafer surface during an etching process [40]. The

monitoring technique involves varying the inputs to a plasma sheath model using a sum

of squares fitting algorithm such that the model outputs match the actual RF waveforms

recorded from the plasma chamber. In [40], the responses of the ion current and energy

in response to changes in source power, gas flow and pressure are analysed.

Yamashita et al. [213] investigates the use of RF waveform analysis to monitor ion

energy and ion flux density for a RIE chamber. The authors use a capacitive approxi-

mation in a model of the plasma sheaths, and also assume that the sheaths are collision-

less. The model results are used to minimise etch-induced damage and contamination

by finding optimum conditions for operation. Essentially, ion flux is determined using

the power/voltage method as described in [210].
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SEERS-based estimation of plasma variables

The Herculesr [214–216] system is a measurement system based on self-excited electron

resonance spectroscopy (SEERS) signals. Hercules and SEERS use a passive in-situ sen-

sor on the plasma chamber wall and an equivalent circuit model for the plasma sheath

to monitor plasma variables such as power coupling, electron collision rate, and electron

density in the plasma in real time. The plasma sheath model uses a hydrodynamic

approach for the plasma, the inert mass of electrons is treated as an inductance, and

collisions with neutrals, including power dissipation in the expanding sheath, as a resis-

tance. When the capacitive behaviour of the sheath is taken into account, the plasma

behaves as a damped oscillation circuit [214].

Figure 4.5 shows the equivalent circuit used by the Hercules system. The left side

of the figure shows the external excitation of the system, and the plasma, represented

on the right side, is modelled as a damped oscillation circuit. The non-linear behaviour

of the sheath creates harmonics of the driving frequency to excite the oscillating circuit

[215].

Figure 4.5: Hercules equivalent circuit [215].

Steinbach et al. [215] show how the plasma variable estimates from the Hercules sys-

tem are useful for endpoint detection, fault detection, process optimisation, estimation

of etch variables, and chamber matching applications. The Hercules monitoring system

is capable of operation with contamination on the surface of its sensor, enabling reliable

measurements throughout complete maintenance cycles.

135



Literature review

Wurm et al. [214] performed similar studies with the Hercules system, analysing elec-

tron density and power dissipation effects, system matching applications, cleaning cycle

optimisation, and long-term process monitoring. Tegeder et al. [217] use SEERS and

Hercules to create process fingerprints for fault detection and analyse chamber condition-

ing effects. The relationships between the plasma variable estimates and downstream

electrical test measurements are also examined to create an early warning system for

faults. In a presentation by Steinmetz et al. [216], the Hercules measurements are shown

to be useful for investigation of first wafer effects, wafer fault analysis and characterisa-

tion of chamber cleaning steps.

Despite the advantages of the Hercules and SEERS system, it has not found widespread

application in VM research, possibly due to need for adaptation of the chamber to allow

installation of the sensor. The sensor requires physical access to the plasma, which can

be difficult to implement in industrial environments.

4.3.4 Estimation of etch variables

The estimation of etch performance variables during processing using in-situ measure-

ments enables tighter etch process control and allows the introduction of run-to-run

APC, or even real-time APC, to the plasma etch process [218]. VM models have ad-

vantages over the standalone input/output models discussed in Section 4.1 when used

for estimation since actual process data that reflect changes in the process, rather than

constant system input set points, are used to estimate the variables of interest. For

wafer-level VM models, statistical summaries of time series traces for each wafer (or

part thereof) are typically used as VM model input variables. Research by Kim and

Kim [147] compare VM models using OES data to conventional standalone input/output

models for estimation of etch rate, profile angle, and etch rate uniformity and finds that

the VM models produce superior estimates.

Generally, VM models are created using empirical modelling techniques because

first-principals physics-based models are unable to produce estimates in a timely fash-

ion without broad simplifications, and, in many cases, the fundamental relationships

between the measured process variables and the variables to be estimated are complex

or poorly understood. Although a great deal of work has been published detailing VM

research, a significant amount of further research has been potentially completed by

private companies, and such work remains confidential and inaccessible to the public.
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Optical-based etch variable estimation

Camara and Zekentes [219] monitor a single emission line corresponding to atomic flu-

orine (704 nm) to indirectly monitor the etch rate of a silicon carbide wafer in SF6/Ar

plasmas. The etch rate is found to be directly related to the fluorine peak intensity.

Similarly, Mozumder and Barna [140] use the slope of a single emission line to monitor

etch uniformity and etch rate in a nitride etch for control purposes.

Zhang et al. [81] use eight selected OES wavelengths along with chamber state

variables to model the expected ellipsometry signal from an etch tool in order to estimate

etch rate and etch depth simultaneously. Finite impulse response models that using up

to 56 past process measurements to estimate the ellipsometry signal are employed. Model

parameter estimation is accomplished using numerous methods, the best being a discrete

wavelet transform. The modelling results are shown to be superior to previous work by

Rietman et al. [220] who used ANN models on the same data set.

Kim and Kim [147] compare the use of different OES-based VM models and a stan-

dalone input/output model. ANNs are trained to estimate etch rate, profile angle, and

etch non-uniformity using four different combinations of input variables recorded during

a 24−1 fractional-factorial experiment:

1. Expert recommended wavelengths. A set of wavelengths is selected based on the

advice of engineers with extensive process knowledge.

2. Expert recommended wavelengths along with the wafer DC bias.

3. Etch process inputs. The etch process inputs are the input set points for the

plasma chamber, and correspond to the type of inputs normally used for standalone

input/output models seen in Section 4.1.

4. The main principal component scores extracted from the OES data.

The first two models outperform the traditional standalone input/output model by

10.1% and 39.3% respectively for etch rate estimation accuracy. When combined with

the expert recommended wavelengths, the DC bias is found to improve the estimates for

etch rate by 32%, but degrade model performance when estimating non-uniformity and

profile angle by 41.8% and 23% respectively. The authors conclude that the DC bias is

not an influential variable for wafer non-uniformity and profile angle. The models using

principal component scores as inputs perform poorly for this data set.

Chen et al. [221] examine the use of PCA and PLS to compress OES data for

modelling of etch rate, uniformity and aspect-ratio dependent etching. Data for the PCA
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and PLS models are obtained using a 26-run, five-factor, central-composite designed

experiment with one spectral observation per wafer, and the resulting estimates are

compared with estimates from a LSR model using manually selected spectral lines as

input variables. The PCA and PLS models are found to be more effective for modelling

of etch rate (R2 = 0.87) and uniformity (R2 = 0.95) than the LSR models with manually

selected spectral lines. PLS models are generally found to use fewer parameters than

the PCA models. Modelling of aspect-ratio dependent etching is generally found to be

inaccurate (R2 = 0.5 − 0.66), and this inaccuracy is attributed to the accuracy of the

metrology used to originally train the models.

Ragnoli et al. [222] compare PCR, PLS regression, forward selection component

analysis (FSCA) and forward selection regression (FSR) to model etch rate from OES

data for a production data set. FSCA is a statistical technique that attempts to sum-

marise the variance in a set of input data by extracting key variables that best represent

the information contained in the input data. FSCA is similar to PCA in that it is es-

pecially suitable for input data that contains many correlated variables. However, the

extracted components correspond directly to individual variables from the original input

data, rather than linear combinations of all variables as is the case with PCA. Such one-

to-one correspondence can be useful in cases where analysts are searching for VM input

variables that are influential to the process output. The authors conclude that FSCA

and FSR are more effective than PCA and PLS for feature selection in the examined

data set. R2 values of 0.94 for the etch rate estimates are achieved for an interleaved

data set using FSR.

Hong et al. [141] use ANNs to model etch rate, uniformity, selectivity, and anisotropy

using OES data from a 24 factorial experiment carried out on a benzocyclobutene (BCB)

plasma etch process. PCA and auto-encoder neural networks (AENNs) are used to

extract features from the OES data. The AENNs extract features that produce esti-

mates 1.14 % better on average than the models based on features extracted using PCA,

albeit with a significant increase in computational complexity.

White et al. [223] examine the use of multiple optical emission spectrometers to

determine spatially resolved estimates of plasma etch variables. Three separate physical

locations on one plasma chamber are used to collect OES data during factorial experi-

ments, and PCR, PLS, and ANN models are trained using the principal components of

the collected OES data to model metal line widths across the wafer. The principal com-

ponents extracted from the OES data are found to be correlated to the input variables

of the etch chamber. The addition of machine state variables such as endpoint traces

and dc bias signals are not found to increase the estimation accuracy of the models. The

authors conclude, as expected, that linear PLS and PCR techniques are most suited for
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experiments operated tightly around a center point, but that non-linear ANN techniques

provide better estimation accuracy over larger ranges. A 50 % reduction in estimation

error is achieved through the use of multiple-beam OES data over single wavelength

methods.

RF-based etch variable estimation

As well as being used for endpoint detection (Section 4.3.1), RF based sensors are

shown by Tsunami [224] to be useful for oxide etch rate estimation. A commercial

impedance sensor, the Straatum SmartPIM plasma impedance monitoring device, is

used to estimate etch rate using the fundamental and some harmonics of current, voltage,

and phase from the power supplies of a dual frequency etch system. Summary statistics

are extracted from the voltage, current, real power, complex power, phase, impedance,

resistance, and reactance signals, and stepwise regression is used to model the etch rate

using these statistics, achieving an R2 value of 0.96 for a production data set. The VM

model is constant, and, as a result, does not remain accurate for large data sets where

there is considerable process drift.

Garvin and Grizzle [225] demonstrate the use of a broadband RF sensor that exam-

ines the reflections from an antenna in an ICP plasma excited by a sweep of frequencies

between 1–2.25 GHz. A purely empirical model is compared to a parametric approach

for estimation of etch rate. The parametric approach involves the determination of series

RLC equivalent circuits that match the response of the broadband sensor and empiri-

cally relating the circuit variables to the plasma etch rate. Stepwise regression is used

as a modelling tool and the empirical model is found to estimate etch rate with slightly

better accuracy (R2 = 0.997) than the parametric model (R2 = 0.962).

Machine state-based etch variable estimation

Some of the first publications concerning the VM of etch variables were produced in 1994

by Lee and Spanos [83, 226] in which machine state variables are used to estimate etch

rates, selectivity, and uniformity of etched wafers. Empirical models are created using

LSR, PCR, PLS and ANNs using a training data set collected from a 32−run designed

experiment, and tested using a data set recorded four weeks later. Uniformity estimates

are inaccurate because none of the input variables were spatially resolved. Polysilicon,

oxide, and photoresist etch rates are estimated with accuracies of approximately 5−10%

by the PCR, PLS and ANN models, the results of which are shown to be statistically

equivalent to each other and significantly better than the MLR results.
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Card et al. [227] use ANNs to predict etch rate and selectivity using similar mea-

surements to Lee and Spanos, but from production data. Prior to modelling, Card et

al. [227] perform variable selection using GAs. GAs are used to optimise the selection

of a subset of variables to be used as VM model input variables. The VM model is then

used in a run-to-run process controller. Because a fixed VM model is used, the authors

recommend complete retraining on regular intervals to maintain model currency.

Zeng et al. [228, 229] estimate etch bias using PCR, PLS, and ANN models with

chamber state variables. Different variable selection techniques are examined for VM

models of etch bias, that is the difference between the critical dimensions of lithog-

raphy patterns and etched trenches. Stepwise selection, random modelling, and GAs

are investigated as model performance-based variable selection techniques, and a linear

correlation test is used as an information theory-based technique. Stepwise selection is

found to be as effective as the more complex algorithms for variable selection, and ANNs

produce the most accurate estimates of etch bias with R2 values of 0.74.

Kang et al. [230, 231] discuss the use of stepwise selection, decision trees, GAs, PCA

and kernel-PCA for dimensionality reduction and variable selection. In [230], the authors

examine four empirical modelling techniques, MLR, ANNs, kNN-regression, and support

vector regression (SVR) for VM implementations on two plasma etch processes using

chamber state variables. Stepwise selection is reported as the best variable selection

technique out of those investigated. The best regression algorithms for the etch process

are found to be LSR and SVR. However, the small test data set employed did not span

enough time to capture process drifts or preventative maintenance (PM) events.

Lin et al. [232] develop an ANN-based variable selection algorithm to create VM

models for estimating a critical dimension in an etch process using chamber state vari-

ables as inputs. During execution of the algorithm, multiple ANN models are developed,

and the partial F-statistics are used to determine when to add or subtract variables from

the ANN models. An input selection using linear stepwise selection is used to seed the

algorithm which produces ANN models with superior estimation capability to those cre-

ated using expert-recommended or stepwise-selected variables alone. Through the vari-

able selection algorithm, an original set of 66 variables is reduced to approximately 10

variables and the VM models estimated the critical dimension within approximately 1%

mean absolute percentage error (MAPE).

Cheng et al. [233, 234] present a method to evaluate the reliability of VM predic-

tions by calculating a “reliance index” (RI) that quantifies the reliability of each VM

estimation. The calculation of the RI is based upon the degree of overlap between the

probability distributions of estimates arising from two process models: a linear MLR
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“reference” model, and a non-linear ANN “conjecture” model. A RI threshold value is

defined, below which estimates are deemed unreliable. To assist the evaluation of each

estimate, similarity indices with corresponding thresholds are used. A global similarity

index (GSI) uses the Mahalanhobis distance to gauge whether new data from the process

is similar to that used during model training, and individual similarity indices (ISIs) are

calculated for each VM model input variable to identify potential causes for reliability

issues. A red/orange/green lighting system is implemented to allow quick interpretation

of the different indices by system operators. The system is used to monitor a data set

of 24 wafers in [234] from a production etch process successfully, but the details of the

input and output variables are kept confidential.

In other research, Cheng et al. [235] describe the development of a dual-phase VM

scheme in which preliminary estimates of process outputs are made using the process

data, and these estimates are updated at a later stage when real metrology values from

neighbouring wafers become available. The VM estimates are considered more reliable

after this update. The accompanying RI and GSI of each VM estimate are also calculated

to gauge the reliability of the estimates and determine if model training or further

measurements are required. An industrial CVD process is used to demonstrate the

effectiveness of the scheme. Su et al. [236] investigated the training and estimation

speed of different model types for the dual-phase system in [235] using industrial CVD

and etch process data and concluded that double-layered ANNs are too computationally

demanding for real-time operation and MLR models do not provide enough accuracy.

Single layer ANNs are recommended for the VM scheme. Again, the input and output

variable details are kept confidential.

4.4 Fab-wide virtual metrology

When accurate VM models are developed for each processing step in the semiconductor

manufacturing cycle, advanced process control (APC) can be implemented at all process-

ing steps using feed-forward and feed-back control loops. A number of researchers have

concentrated on the development of fab-wide VM frameworks suitable for semiconductor

manufacturing. However, most of the published studies are based on the simulation of

production environments, since actual fab-wide implementation of VM systems remains

an aspiration. A sample of such research is presented here.

Generic approaches to the development of VM models for manufacturing processes

have been proposed. For example, Ferreira et al. [237] suggest a generic nine-step

method for creating VM models for individual semiconductor manufacturing processes.
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Overall, the method is broken into three procedures; data pre-processing (including

variable selection), VM model development, and VM model implementation. An indus-

trial CVD process is used as an example application, and a VM model using ANNs is

successfully implemented.

Su et al. [238] stress the importance of feed-forward and feed-back control (between

different manufacturing steps) in semiconductor manufacturing. A control architecture

with multiple layers in a cascade structure is suggested. A dual-VM scheme, consisting of

a tool-level estimator for estimation of wafer characteristics and a product-level estimator

for estimation of the electrical performance of finished products, is presented. The

electrical performance of a wafer is referred to as the wafer acceptance test (WAT). A

schematic of the proposed fab-wide VM architecture is shown in Figure 4.6.

several processing steps using virtual WAT (Wu et al.,
2005). Electrical properties of the product are controlled by
adjusting metrology set points which subsequently affect
the recipes in related tools. Fig. 3 gives a detailed
description of the control architecture for product quality
control. It is clear that the quality estimation (VM and V-
WAT) plays a vital role in this framework. The series
nature of the process flow leads to a feedforward/feedback
(FF/FB) structure from a tool perspective provided with
multiple layers of cascade control.

3. Control of RTP

Typically, wafer processing in a tool is described by a
recipe which consists of on the order of 10 steps. These
steps include: warm-up, temperature program, flow manip-
ulation, cool-down, etc. Generally, very simple feedback
control is used to ensure successful execution of the recipe.
The rapid thermal processing (RTP) is used to illustrate the
tool level control.

3.1. Process

RTP is an effective tool for various single-wafer thermal
treatment processes. It permits processes to be accom-
plished with minimal dopant redistribution and uniform
deposition quality with a smaller thermal budget. However,
poor RTP system design can lead to significant tempera-
ture differences in the wafer. One of the main shortcoming
that RTP must overcome is that of heating (or cooling) the
wafers non-uniformly which results in material failure due
to an increase in thermal stresses or serious warpage. The
damage due to the presence of thermal stresses can
represent a limit on the applicability of rapid thermal
processing.

The temperature non-uniformity in the wafer is caused
by three factors: edge effect, pattern effect, and heat source.

The higher heat loss from the wafer edge has been found to
result in a radial temperature gradient in the wafer. To
improve the wafer temperature non-uniformity produced
by the edge effect, several radiative shields can be placed at
the edge of the wafer to reduce the heat loss from the wafer
edge and reflect the radiative energy back into the wafer
during the cooling process (Lord, 1988). By varying the
angle of the shield, an optimal shield configuration can be
found to minimize the induced thermal stress (Young &
McDonald, 1990). Hebb and Jensen (1998) show that
pattern-induced temperature non-uniformity can cause
plastic deformation during a RTP cycle and the problem
is exacerbated by single-side heating, increased processing
temperature and ramp rate. Design and control of RTP to
improve temperature uniformity was explored by Huang,
Yu, and Shen (2000a, b) and Huang, Liu, and Yu (2000c).
A cross-sectional view of the furnace and wafer is shown

in Fig. 4. A bank of tungsten halogen lamps provides the
thermal radiative energy to the single silicon wafer through
a transparent quartz window. Since quartz does not absorb
light efficiently within the wavelength band of the lamps, it
can be neglected in the thermal system. Let us assume the
wafer is 200mm in diameter held by three quartz pins and
enclosed in a cylindrical chamber, where the chamber is
axis-symmetric in geometry (Chao et al., 2003a, b; Huang
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Pasadyn and Edgar [239] examine a Kalman filter-based state estimation scheme

for the manufacturing process that views the manufacturing area with all the tools,

products, and processes contained within as a single interrelated system. The estimator

is designed to operate even in the case of missing or delayed measurements and is shown

in [239] to work with a run-to-run controller on a simulated process.

Khan et al. [16, 17] present a wafer-to-wafer control scheme using VM on a factory

level as illustrated in Figure 4.7. Similar to Ferreira et al. [237], Khan et al. [16] suggest

a generic set of steps to implement VM, recommending the use of designed experiments

for data collection and PLS models for estimation. A simulation study of two tandem

142



Literature review

processes illustrates the effectiveness of the scheme using a double exponentially weighted

moving average (dEWMA) wafer-to-wafer controller and showing improved performance

over traditional lot-to-lot controllers that use only actual metrology data. Issues such as

poor data quality, metrology delays, maintenance events, and multi-step processes are

identified as challenges facing the successful implementation of fab-wide VM and control

in the near future. Details on the recursive PLS algorithm and dEWMA controller that

are used, along with simulation results on a simulated multi-input multi-output (MIMO)

process, are presented by Khan et al. in [11].

Figure 4.7: Fab-wide control using VM at individual processing tools [17].

4.5 Discussion

Direct comparison of results between different VM and modelling research is made dif-

ficult by the wide range of processes, data sources, techniques, and applications used by

different researchers. However, some broad conclusions can be taken from the research

examined in this chapter.

Standalone input/output models are less effective for process monitoring purposes

than VM models using real-time process data. Standalone empirical input/output mod-

els do not take the plasma chamber state into account during production, and this state

can have a significant influence on the process output. Analytical models require too

much simplification, with resultant losses in accuracy, for real-time applicable to complex

plasma etch processes. Accurate simulations of the etch chemistry cannot be achieved

in a timely fashion.
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Data quality is important for successful VM implementation and it is important

to use sensors capable of measuring process variations that are relevant to the system

output. Factorial experiments can be used to collect the data for model building if avail-

able, but such data is not always representative of the variations observed in production

processes. The reality of many production environments is that measurement frequency

is relatively low, and the etch process suffers from extensive process drift and regular

unpredictable process shifts due to maintenance events.

The estimation accuracy of VM models can be reduced in situations where there

are patterns in the process data that are not represented in the training data used

during model creation. In general, extrapolation of a model operating space can produce

unpredictable estimates, especially for non-linear models. As such, it is useful to obtain

a measure of the level of confidence in each estimate, especially in cases where VM

estimates are used for process control.

No single modelling or variable selection techniques stand out as particularly ben-

eficial for VM modelling of etch processes. Fab-wide implementation of APC using

VM schemes is in its infancy, but the potential performance gains of the realisation of

such systems have been identified. Only through further development of VM models

for each semiconductor manufacturing process can a VM-empowered APC system be

implemented.

By no means is there a widely accepted standardised method for VM modelling

of the plasma etch process. Relatively few researchers have provided comprehensive

information on methods to develop VM models that can cater for the peculiarities of etch

process dynamics. Chapters 6 and 7 now strive to provide a comprehensive examination

of VM model development for a production etch process. Among other techniques,

Gaussian process regression (GPR) models that produce estimate confidence intervals

as part of the estimation procedure are examined as a potential VM models for the etch

process. Chapter 8 examines the use of VM techniques for real-time control, and further

literature in the area of control is examined at that point.

The literature review detailed in this chapter formed part of a publication published

in the IEEE Transactions on Semiconductor manufacturing [8].
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Chapter 5

Case study: Virtual metrology for

the VASIMR engine

5.1 Introduction

In this chapter, a case study is examined in which virtual metrology (VM) techniques

are used for temperature estimation in the variable specific impulse magnetoplasma

rocket (VASIMR) engine. The VASIMR engine is one of a new generation of electrically

mediated propulsion systems for spacecraft that produces thrust from a fuel in plasma

form using electric energy. The use of electric energy is in contrast to the vast majority of

existing rocket engines which rely exclusively on chemical combustion to achieve thrust

in the vacuum of space.

An empirical state-space model relating the VASIMR engine temperatures to the

plasma engine inputs is developed for temperature estimation. The model uses optical

emission spectroscopy (OES) measurements (see Chapter 2) as correction terms to en-

hance closed-loop estimation accuracy. Results are presented for both open-loop and

closed-loop estimation strategies.
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5.2 The VASIMR engine

5.2.1 Basic operation

The VASIMR engine is an electric propulsion technology being developed by the Ad

Astra Rocket Company at its facilities in Houston, Texas, USA, and in Liberia, Gua-

nacaste, Costa Rica. The VASIMR engine uses a highly ionised plasma accelerated using

magnetic fields to produce thrust. In the VASIMR engine, plasma is generated using a

helicon antenna driven by radio frequency (RF) waveforms at the frequency 13.56 MHz.

Helicon discharges are known to be efficient methods for plasma production [240].

The VASIMR engine produces thrust in three different stages and is depicted in Fig-

ure 5.1. Initially, electromagnetic waves from the RF-powered helicon antenna energise

free electrons present as a result of ambient thermal energy in a neutral gas fuel. These

electrons then ionise atoms in the gas through energetic collisions to create a plasma.

This first stage is the helicon stage of the VASIMR engine.

Charged particles in plasmas follow helical paths along magnetic field lines due to

the Lorentz force, which is proportional to the charge on the particles, the velocity of

the particles, and the strength of the magnetic field. In the VASIMR engine, carefully

designed electromagnets form magnetic field patterns that confine the plasma and move

it from the helicon stage to the ion cyclotron resonant heating (ICRH) stage of the

rocket.

In the ICRH stage, a second helicon antenna excites the ions in the plasma at

their gyrofrequency, further energising the propellant gas [241]. The gyrofrequency, or

cyclotron frequency, of an ion is the frequency of rotation of the ion as it spirals in a

magnetic field, and is given by

ωci =
qiB

mi
rad/sec, (5.1)

where ωci is the ion cyclotron frequency, qi is the ion charge, B is the magnetic

field strength, and mi is the mass of the ion. The ICRH antenna operates on the

same principal as the electron cyclotron resonance (ECR) plasma chambers discussed

in Section 2.4.3, heating ions instead of electrons by supplying energy at their cyclotron

frequency.

In the final stage of the rocket, a group of magnets, comprising the magnetic nozzle,

accelerate the plasma away from the craft along expanding magnetic field lines. It is at

146



VASIMR study

this point that the energised plasma physically detaches from the engine and its magnetic

field, thus creating thrust. The exhaust velocities from VASIMR are expected to reach

as high as 120 km/s [242] in final prototypes. For near-term applications of VASIMR,

large solar arrays are expected to generate electric power for the rocket [243].

Figure 5.1: Schematic of the variable specific impulse magnetoplasma rocket
(VASIMR) engine. The VASIMR consists of three main stages, namely, a helicon
plasma source, an ion cyclotron resonance heating (ICRH) plasma accelerator, and a
magnetic nozzle that accelerates the plasma away from the craft to produce final thrust
[241]. For prototypes on Earth, a 5-m3 vacuum chamber is used to simulate the vacuum

of outer space. Image courtesy of NASA.

5.2.2 Advantages of the VASIMR engine

Compared to alternative electric propulsion technologies, the VASIMR engine has many

advantages as a potential space propulsion system. Electrodes are not required to be

in contact with the plasma since power is inductively coupled to the plasma in the

engine. This electrode-less design allows greater power densities to be sustained for

longer periods of time than conventional chemical combustion or ion engines, without

fear of electrodes becoming damaged or wearing out. This design is essential for missions

requiring months or years of continuous rocket operation. The propellant gas, which is

Argon, is inexpensive, chemically inert, and widely available.

The VASIMR engine produces thrust very efficiently compared to chemical rockets.

The efficiency of a jet or rocket engine is measured by the momentum change effected per
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unit weight of propellant consumed. This characteristic, which is measured in seconds,

is termed the specific impulse of the engine. Used as a measure of economy for rocket

engines, specific impulse is comparable to a miles-per-gallon, or litres-per-100 km, rating

for a motor vehicle.

Chemical rockets used in spacecraft typically produce thrusts of 60000–70000 N at

a specific impulse of 300 s [244]. High thrusts from chemical rockets provide a large

acceleration, but with a rapid consumption of fuel. The VASIMR engine produces rela-

tively low thrusts of 5–10 N, but with a high specific impulse of between 5000 and 15000

s [245]. With the ability to sustain thrust for prolonged periods, the relatively small

acceleration achieved using low thrusts ultimately achieves higher spacecraft velocities

for a given fuel supply. Figure 5.2 illustrates that over the vast distances involved in

interplanetary travel, a VASIMR-equipped spacecraft can reach distant destinations in

less time than a spacecraft using chemical rockets for propulsion, with the same quantity

of fuel.

The VASIMR engine gets its name from its capability to vary its specific impulse

performance in order to produce more or less thrust as required. By varying the amount

of energy dedicated to the ICRH and helicon sections, and varying the amount of pro-

pellant delivered for plasma generation, VASIMR is capable of either generating low-

thrust, high-specific impulse exhaust or relatively high-thrust, low-specific impulse ex-

haust [242].

Although significantly more than 10 N of thrust is required to produce a substantial

fraction of the gravitational force felt on Earth, the constant acceleration from continuous

VASIMR operation results in an artificial gravity effect on board spacecraft, reducing

the physiological effects that weightless environments have on the human body.

5.2.3 Problem statement

Heat is an undesirable by-product of helicon plasma production. The helicon stage of

the VASIMR engine comprises a quartz gas containment tube surrounded by a helicon

antenna. Because the ionisation mechanisms are not completely efficient, some neutral

atoms do not acquire sufficient energy from collisions to expel electrons into the plasma.

Although these neutral atoms might achieve an excited state temporarily from such

collisions, they eventually return to their base configuration, releasing energy as photons

in the visible, IR, and UV spectra as described in Section 2.5.1. The released energy

radiates away and is absorbed by the gas tube and other nearby engine elements.
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Figure 5.2: Example performance of a VASIMR engine-propelled spacecraft com-
pared to a chemical rocket-propelled spacecraft. This figure compares the velocity and
distance profiles for a hypothetical 2000 kg mass accelerated using a thrust of 60000
N from chemical rocket with specific impulse of 300 seconds, and a thrust of 10 N
from VASIMR with a specific impulse of 5000 seconds. Both spacecraft start with zero
initial velocity and 500 kg of fuel. The chemical rocket burns its fuel in 25 seconds to
achieve maximum velocity. After 3.5 days, the VASIMR engine-powered craft passes
the conventional craft travelling twice as fast, and still having used only 61 kg of its fuel
reserves. The VASIMR engine-equipped craft can continue to accelerate for 28 days

using the initial 500kg of fuel, reaching a final velocity of 12.3 km/s.

In addition, high velocity neutrals can be created as a result of energetic collisions

between particles. These neutral atoms are not affected by the magnetic field lines

and continue on their original paths at high velocities, ultimately colliding with other

particles or the gas containment tube. Furthermore, since the gas containment tube is

not completely transparent to radio-frequency energy, it absorbs a portion of the energy

transmitted by the antenna. All of these effects result in significant and rapid heating

of the gas tube as shown in Figure 5.3.

Temperature control of the gas tube is critical to the VASIMR engine design since

the quartz tube can potentially reach absolute temperatures and achieve temperature

gradients beyond its allowable limits. In addition, the VASIMR engine prototype uses

superconducting magnets located close to the gas tube to produce the strong magnetic

fields required to propel the plasma from the engine to produce thrust. These magnets

operate at cryogenic temperatures that must not be affected by the heat produced during

the plasma production process.
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Figure 5.3: Gas containment tube surface temperatures measured at 10 different lo-
cations during plasma startup. Temperatures rise quickly after a stable plasma is estab-
lished. Note the large variation in temperatures on the surface of the gas containment
tube in steady state. The nonuniform distribution occurs since the heat deposited by
the plasma varies with position due to the mechanisms of energy transfer to the plasma

by the helicon antenna.

Although laboratory prototypes of the rocket use thermocouples to monitor the tem-

peratures of the gas containment tube, thermocouples cannot be used in the final flight

design because they would obstruct cooling designs that are in development. Ther-

mocouple temperature signals are also subject to electromagnetic interference from the

helicon antenna and, furthermore, the thermocouples themselves are physically fragile.

The goal of this case study is to develop a virtual metrology system for estimating

the temperature distribution on the gas containment tube in the helicon section of the

VASIMR engine, in the absence of direct temperature measurements from thermocou-

ples. In particular, a state-space prediction model, that employs OES measurements

from the plasma for temperature-estimate correction, is used. Because OES measure-

ments directly correlate to the excitation of non-ionized neutrals in the plasma, and since

these neutrals contribute to the heating of the gas containment tube, it is conjectured

that OES data can be used to assist in temperature estimation.
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5.3 The helicon antenna system

As discussed in Section 5.2.1, high-density plasma is produced using a helicon wave

source in the VASIMR engine. The helicon section of the engine, depicted in Figure 5.4,

consists of a helicon antenna wrapped around a quartz tube through which neutral gas

is flowing. Electromagnetic coils, which maintain a magnetic field parallel to the gas

flow, surround the quartz tube.

Helicon 
Antenna

Gas Containment 
Tube

(Quartz)

Plasma 
Flow

Electromagnet
 Coils

Gas 
Injection

Spectrometer 
Viewpoint

Figure 5.4: Helicon section of the VASIMR engine. A helicon discharge uses a right-
hand circularly polarised wave to efficiently ionise a neutral gas to plasma state. The
helicon is surrounded by electromagnetic coils that maintain a magnetic field along the

axis of the antenna to assist in high-density plasma production.

Helicon discharges are a form of inductively coupled plasmas (ICPs) where a mag-

netic field is used to assist in the production of high-density plasma. The magnetic field

has three main functions in such plasmas.

1. The magnetic field increases how far an electromagnetic wave penetrates into the

plasma, also known as the skin depth. With the magnetic field in place in a helicon

discharge, the electromagnetic waves can penetrate into the entire plasma.

2. The magnetic field helps to confine the electrons in the plasma for an extended

time allowing more collisions to occur.

3. The magnetic field gives the operator the ability to vary plasma properties such

as the plasma density uniformity [22].

In the VASIMR engine, the magnetic field also confines the plasma to the center of

the quartz tube, and guides the plasma flow to the next section of the engine.

A helicon wave is defined as a right-handed polarised wave that propagates in a

radially confined magnetised plasma for frequencies ωci � ω � ωce, where ωci is the
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ion cyclotron frequency, ω is the frequency of the helicon wave, and ωce is the electron

cyclotron frequency [246]. A detailed review of the discovery and advances in helicon

research is provided in [246] and [247].

When helicon input conditions such as pressure, power, and magnetic field strength

are varied over a broad range, helicon discharges operate in several distinct modes [248]

namely capacitive, inductive, and helicon-wave modes [249]. Jumps between modes,

which are accompanied by dramatic changes in plasma density (by factors of 2 or 3),

can arise during smooth variations in the system input variables. The experiments

described in this chapter have power settings of 0.8–1.4 kW, where the system operates

in an inductive mode. Within each operational mode, the use of a linear estimator model

is justified, while multiple linear models could be employed to cover a range of modes.

For the purposes of this study, the helicon plasma source is operated as an isolated

plasma production system. There is no ICRH antenna or magnetic funnel on the proto-

type engine used for experimentation. The flow of Argon gas into the quartz tube, the

dc current in the electromagnets, and the RF power delivered to the helicon antenna can

all be varied independently. Changes in these input variables result in changes in the

plasma generated, with consequent variations in the optical emission from the plasma

and heat distribution on the surface of the quartz tube.

5.4 Modelling the VASIMR engine

5.4.1 Optical data preprocessing

OES data are collected from the plasma downstream from the helicon section, as depicted

in Figure 5.4. Several steps are undertaken to extract the features of interest and to

restructure the collected data into a form that is useful for temperature estimation.

An Ocean Optics S2000 spectrometer, sampled once per second, is used to collect

the OES data from the plasma exhaust of the helicon section of the VASIMR engine. At

each sampling instant, the intensity of the plasma optical emission is recorded at 2047

wavelengths between 177 nm and 880 nm with an integration time of 200 ms (see Section

2.5.1). A sample spectrum from the VASIMR plasma is shown in Figure 5.5. Although

only Argon is present in the VASIMR plasma, many spectral lines are observed due

to different ionisation levels of the argon atoms in the helicon section of the engine.

An analysis of the time evolution of the spectral intensity lines reveals that many lines

are highly correlated in time, with correlation coefficients greater than 0.75. Due to
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the high levels of correlation between the time series of the intensity measurements

at each wavelength, principal component analysis (PCA) is used to identify the main

uncorrelated, or independent, components that contribute to the variance in these time

series.

Figure 5.5: Spectrum for Argon plasma in the VASIMR engine. Two distinct groups
of emission lines can be seen in this figure. Ar I denotes the first ionisation level of
an Argon atom. Ar II, the second ionisation level, releases higher energy photons, and

hence corresponds to lower emission wavelengths (from Equation (2.7)).

Typically, normalisation to unit variance is performed when the original data have

multiple amplitude scales to treat all variables with equal importance during PCA.

However, unit variance normalisation is not used during this study since all OES wave-

lengths are recorded on the same intensity scale. It is not desirable to give the same

importance to low-intensity spectral lines with a low signal to noise ratio (SNR) as other,

high-intensity spectral lines with higher SNRs.

For the OES data recorded during the VASIMR engine experiments, it is found

that just three principal components are capable of representing 97% of the original

data variance. Reducing the OES data set from 2047 correlated variables to only 3

orthogonal principal components that can represent the majority of the data variance

significantly reduces computational requirements during temperature estimation and

shows that the underlying process driving OES variation can be adequately described

by three independent time series.
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5.4.2 Model form

The VASIMR helicon section has three manipulated inputs, namely, the gas flow rate,

the electromagnet current, and the RF power delivered to the antenna. A state-space

model of the form

x(k + 1) = Ax(k) + Bu(k), (5.2)

y(k) = Cx(k), (5.3)

is used to model the system. The system inputs u ∈ R3×1 correspond to the inputs to

the helicon (gas flow rate, electromagnet current, and RF power), the outputs y ∈ R3×1

are the three principal components arising from the PCA analysis of the OES data

which as discussed in Section 5.4.1, and finally, the state vector x ∈ R18×1 represents the

temperatures measured at 18 locations on the gas containment tube. Hence, A ∈ R18×18,

B ∈ R18×3, and C ∈ R3×18.

The temperatures are measured using thermocouples bonded to the outside surface

of the gas containment tube. Figure 5.6 shows the layout of the thermocouple array.

Fifteen thermocouples are arranged along three longitudinal lines of five thermocouples,

at angular locations θ = π/3, π, and 5π/3 radians, while three thermocouples are

positioned at intermediate angles (0, 2π/3, and 4π/3 radians) between the longitudinal

lines. Figure 5.7 shows temperatures recorded from the thermocouples arranged in the

longitudinal lines at one particular point in time. The hottest part of the gas tube

is near the center in the x-direction, in the region surrounded by the helicon antenna

which corresponds to the region of plasma production. Thermocouples are sampled at

1 Hz using a National Instruments analog-to-digital convertor (ADC) interfaced with a

LabViewTM software control system for the VASIMR engine.

5.4.3 Model identification

For model identification, data records for u, y, and x are available for various system

excitations. The model parameters are determined by first expanding Equation (5.2)
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Gas Containment Tube

Thermocouple
Positions

Axial Line

Intermediate
Position

Figure 5.6: Thermocouple positions on the gas containment tube. An array of 18
thermocouples is used to record temperature information from the outside surface of
the gas tube. The thermocouples are arranged in three longitudinal lines of 5 ther-
mocouples, with 3 extra thermocouples placed in intermediate positions between these

lines.
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Figure 5.7: Sample temperature values recorded from thermocouple array. The region
near the center of the tube, near thermocouple positions 2, 3, and 4, corresponds to the
region inside the helicon antenna, where plasma is produced and, consequently, where

the highest temperatures are recorded.

where n is the number of system states and m is the number of system inputs. The first

row of Equation (5.4) can be written, for k + 1, k + 2, · · · , k +N , as
x1(k + 1)

x1(k + 2)
...

x1(k +N)

 =


x1(k) · · · xn(k)

x1(k + 1) · · · xn(k + 1) · · ·
...

...
... · · ·

x1(k +N − 1) · · · xn(k +N − 1)

u1(k) · · · um(k)

· · · u1(k + 1) · · · um(k + 1)
...

...
...

· · · u1(k +N − 1) · · · um(k +N − 1)





a11
...

a1n

b11
...

b1m


. (5.5)

Equation (5.5) is of the form

y = Xβ, (5.6)

which has the least squares solution (as shown in Section 3.1)

β̂ = (XTX)−1XTy. (5.7)
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In this application, β̂ represents the elements of the first row of the A and B matrices

of the state-space model in Equation (5.2). To find the ith row of A and B, the least

squares problem is


xi(k + 1)

xi(k + 2)
...

xi(k +N)

 =


x1(k) · · · xn(k)

x1(k + 1) · · · xn(k + 1) · · ·
...

...
... · · ·

x1(k +N − 1) · · · xn(k +N − 1)

u1(k) · · · um(k)

· · · u1(k + 1) · · · um(k + 1)
...

...
...

· · · u1(k +N − 1) · · · um(k +N − 1)





ai1
...

ain

bi1
...

bim


. (5.8)

To obtain all rows of the estimates Â and B̂ of A and B, a total of n least-squares

problems are solved. A similar formulation is used to find Ĉ, the estimation of C.

Expanding Equation (5.3) for sample k as


y1(k)

y2(k)
...

yp(k)

 =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

... · · · ...

cp1 cp2 · · · cpn




x1(k)

x2(k)
...

xn(k)

 . (5.9)

The ith row of Equation 5.9 can be written, for k + 1, k + 2, · · · , k +N , as
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yi(k + 2)
...

yi(k +N)
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x1(k) x1(k) · · · xn(k)
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...
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ci1

ci2
...
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 , (5.10)

which is again of the form y = Xβ and can be solved via linear least squares. To solve

for the complete Ĉ matrix, a total of p such least square problems must be solved, where

p is the number of outputs in the state-space model.
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5.4.4 State estimation

Measurements of only u(k) and y(k) are available during normal VASIMR operation,

when thermocouple measurements x(k) are not available. The input/output measure-

ments are used to estimate the state vector x(k) of gas tube temperatures. In both

operational and experimental modes of the VASIMR engine, the values of the input

vector u, which are the gas flow rate, the electromagnet current, and the antenna RF

power, are set in real time.

With the model described by Equations (5.2) and (5.3), we can predict the state

vector x(k) for a known input sequence u(k), assuming knowledge of the initial system

state x(0). However, due to inaccuracies in both the model structure and parameters,

unmeasured disturbances to the process, and significant uncertainty in the initial system

states, state predictions from an open-loop estimation model in this form are rarely of

practical value [250].

To decrease sensitivity to inaccurate or unknown initial conditions, a Luenberger

observer is used to asymptotically estimate the state. The Luenberger observer [251]

incorporates a correction term to the state estimate that is based on the error between

the modelled system output Ĉx̂(k) and the measured output y(k). The correction term

is incorporated in the state equation such that

x̂(k + 1) = Âx̂(k) + B̂u(k) + L(y(k)− Ĉx̂(k)), (5.11)

where x̂(k) is the estimated state, and L(y(k) − Ĉx̂(k)) is the correction term. L ∈
Rn×p is a gain matrix, adjusted to achieve satisfactory estimation error dynamics. The

estimator structure is shown in Figure 5.8, where x̂p is used to denote the state estimate

before correction, that is,

x̂p(k + 1) = Âx̂(k) + B̂u(k). (5.12)

With the estimation error defined as e(k) , x(k) − x̂(k), the error dynamics are

found by subtracting the estimate of Equation (5.11) from the state shown in Equation

(5.2) [250] to give

e(k + 1) = (Â− LĈ)e(k), (5.13)
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Figure 5.8: State-space model with estimation feedback. Errors between the es-
timated outputs and the measured outputs are used to update the estimated state

vectors. In this diagram, x̂p denotes the state estimate before correction.

assuming that the model Â, B̂, Ĉ is sufficiently close to the real A,B,C. The char-

acteristic equation of the error is given by

det[zI− (Â− LĈ)] = 0. (5.14)

The desired location of the estimator error poles, which determine the error decay speeds

and noise rejection properties, can be specified as

zi = ζ1, ζ2, ζ3, ....ζn. (5.15)

The specified desired poles yield a desired characteristic equation

αe(z) = (z − ζ1)(z − ζ2)(z − ζ3)....(z − ζn) (5.16)

and by comparing the coefficients in the expansion of Equation (5.16) with the

coefficients yielded from Equation (5.14), the desired value of L can be determined.

An alternative method of determining L for a desired error response is the use of

Ackermann’s formula [250] in estimator form, given by
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Value Low Mid High

Antenna Power (W) 800 1100 1400
Magnets (A) 800 1000 1200

Gas Flow Rate (sccm∗) 100 N/A 300

Table 5.1: Table of VASIMR experimental input levels. Experimental levels for an-
tenna power, electromagnet current, and gas flow are shown. The variations in experi-
mental inputs are deliberately kept small in order to avoid helicon mode changes. All
combinations of the levels shown are explored, requiring 18 experiments in total. No
mid value is used for the Argon gas flow rate due to operational constraints. (∗sccm =

standard cubic centimeter per minute)

L = αe(Â)O−1


0

0
...

1

 , where O =


Ĉ

ĈÂ
...

ĈÂn−1

 . (5.17)

Here, αe(Â) is the matrix formed by substituting Â into Equation (5.16), the char-

acteristic polynomial of the desired closed-loop estimator, and O is the observability

matrix. Even with (relatively small) modelling errors such that the model parameters

Â, B̂, and Ĉ are not exactly equal to A, B, and C, L can be determined to achieve

stable error dynamics with acceptably small errors [250].

5.4.5 Experimentation

A factorial experiment consisting of 18 experimental input set points is carried out

to gather data for model identification. The input vectors are chosen such that the

helicon remains in the same operational mode. Perturbations in antenna power, gas

flow, and magnet current are introduced as described in Table 5.1. Each input vector

corresponds to a different combination of input-variable values, and the resultant gas

tube temperatures, monitored using the 18 thermocouples, are allowed to reach steady

state where possible, as shown in Figure 5.9. Four of the experiments are repeated to

ensure that consistent temperature and OES readings are recorded for repeated input

conditions, leading to 22 experiments in total.

The data from the factorial experiment is to be used to create the state-space model

as described in Section 5.4.3, which is configured in closed-loop estimator form as shown

in Figure 5.8. However, due to differences in the dynamic responses of the OES and the

thermocouple data, some signal processing is applied to the OES data prior to modelling,

as described in Section 5.4.6.
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Figure 5.9: Example thermocouple measurements during DOE. Abrupt changes
in temperatures and temperature distribution are observed when system inputs are
changed. Temperatures are allowed to reach steady state before the inputs are changed

again.

5.4.6 Adjustment of OES time constant

The transients in the OES principal components are relatively fast compared to those

of the thermocouples, because the plasma, and correspondingly its light emission, reacts

almost instantly to changes in the system inputs, while the gas tube temperatures reach

steady state at a slower pace due to thermal inertia of the gas containment tube. The

time response for one thermocouple reading is shown in Figure 5.10. The time constant

τ of a system represents the time it takes the step response of the system to reach 63.2%

of its final value, and is shown to be approximately 254 seconds for the signal shown

in Figure 5.10. The time constant for the OES data, in contrast, is approximately 2.5

seconds.

The discrepancy between the OES and temperature data time constants leads to

difficulties in determining a satisfactory output matrix C for the model. The output

state-space equation (Equation 5.3) describes a static, time-invariant linear relationship

between the gas tube temperatures in x and the OES principal components in y. How-

ever, while this linear relationship may exist for the steady-state points of operation, it

cannot exist for all sample points if the time constants for the OES and temperature

data are different.
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Figure 5.10: Time response for thermocouple signal. The time constant τ for the
thermocouple signal shown is approximately 254 seconds.

In order to assist the identification of a satisfactory linear relationship for all samples,

the dynamic response of the spectral data is slowed using an exponentially weighted

moving average (EWMA) filter. The filtered signal from the EWMA filter is denoted

S(k), and

S(k + 1) = αewmaS(k) + (1− αewma)y(k), (5.18)

where y(k) is the original OES principal component signal. The principal component

signals are slowed to have similar time constants to those of the temperature readings,

allowing consistent estimation of a constant output matrix C. Figure 5.11 depicts the

effect of several different αewma values on an OES principal component signal. A filter

coefficient of αewma = 0.995 is chosen for the best match between the principal compo-

nent time constant and the time constant of the thermocouple signal. The time constant

for each thermocouple on the gas containment tube is found to dependant on its exact

location relative to the antenna. However, a value of αewma = 0.995 suitably filters

the principal component signals to suit the average thermocouple time constant values.

The EWMA filter also removes noise and erroneous fluctuations from the OES principal

component signals, as depicted in Figure 5.12.
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Figure 5.11: Effect of different αewma = 0.995 on an OES principal component. A
value of αewma = 0.995 is ultimately chosen to adjust the principal component time

constants to be close to that of the temperature signals.

5.5 Performance and results

5.5.1 Output equation validation

To validate the the output equation (Equation (5.3)) of the state-space model, Figure

5.13 compares two predicted principal components ŷ produced by the Equation (5.3)

when driven with the recorded temperature data x(k), to the real principal components

of the OES data recorded, y. The relationship between the states and the components

is adequately represented by the linear relationship y(k) = Ĉx(k), given the quality of

the model/data match in the figure. The agreement between the estimated outputs and

the real outputs confirms the existence of an approximate static and linear relationship

between the gas tube temperatures and the EWMA-filtered OES principal components,

simultaneously validating the choice of αewma.

5.5.2 Multi-step prediction performance

As a further test of the state-space model performance, the model is configured in an

open-loop manner. In this configuration, no feedback term is included to correct the

state estimates, corresponding to L = 0 in Equation (5.11). With L = 0, the state
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Figure 5.12: Application of exponentially weighted moving average filter to optical
emission spectrometer (OES) data. The filter serves to slow the transients of the OES
data, allowing a linear relationship between OES and temperature data to be found.

estimate x̂(k+ 1) is independent of the measured output y(k) and depends only on the

VASIMR engine inputs u(k) and the previous state estimate x̂(k), such that

x̂(k + 1) = Âx̂(k) + B̂u(k) (5.19)

Two conditions are tested. Firstly, when configured in this open-loop manner and

given accurate initial conditions such that x̂(0) = x(0), the temperature estimates are

found to remain reasonably accurate with changes in inputs for k > 0. The state-

space model can estimate future temperatures with a root mean squared error (RMSE)

of 2.1%.

However, in a real VASIMR engine implementation, the precise initial temperatures

of the system are not known, since no absolute measurement of temperature is avail-

able. The second test simulates a situation with unknown initial conditions. The model

is tested with a random initialisation of x̂(0) to investigate the evolution of the state

estimates over time. As expected, larger errors are observed for unknown initial condi-

tions, with temperature estimates remaining inaccurate for the duration of the test, and

an approximately constant offset error is observed.

The two conditions are demonstrated in Figure 5.14, which shows the evolution of

two estimated system states as examples, representing two thermocouple temperature
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Figure 5.13: Comparison of the model outputs ŷ in response to real state vectors x
with the recorded system outputs y. The system outputs are the principal components
of the optical emission spectroscopy data. The model output equation y(k) = Ĉx(k)
emulates the optical emission principal component scores when driven by the real system

states.

measurements on the gas containment tube. Figure 5.15 shows the open-loop behaviour

of the system outputs (the OES measurements) subjected to the same tests, depicting

two of the three OES principal components on the same axis. As is the case with

the estimated state evolution, the output estimates are inaccurate for unknown initial

conditions for k > 0.

5.5.3 Closed-loop estimation

To accurately correct the state estimates when the initial states of the system are un-

known, feed-back of the measured system outputs is introduced. Equation (5.11) is used

to update the state estimate x̂(k+ 1) in response to the model output estimation error.

The estimator transient response is to be set to be slightly faster than the transients

found in the model state matrix Â using Ackermann’s formula. As in Section 5.5.2,

a random initial condition is used to simulate the scenario where the temperature is

unknown at estimator startup. Figure 5.16 shows the evolution of a selection of esti-

mated states with the estimator configured in closed-loop form. For comparison, the

inaccurate open-loop state estimates are also shown on Figure 5.16. Figure 5.17 shows

the corresponding evolution of the model outputs for the system in both open-loop and

closed-loop configurations.
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Figure 5.14: Evolution of two estimated state vectors for state-space model with
differing initial conditions. Greater errors are observed for cases with inaccurate ini-
tial conditions. These inaccuracies are expected since no error feedback exists in this

configuration, leaving estimates uncorrected.

For the closed-loop results, the estimated outputs and the estimated states converge

toward the true values over time as a result of the error feed-back implementation,

even with unknown initial conditions. The provision of feed-back correction removes

the open-loop requirement of exact initial conditions for estimator accuracy and gives a

RMSE of ∼ 2% after the estimator converges.

5.6 Summary and conclusions

The VASIMR propulsion system is an plasma propulsion system for space craft that

uses magnetic fields to accelerate plasma to produce thrust. Undesired heat produced in

the helicon section of VASIMR must be monitored and removed safely to avoid damage

to system components, especially when higher power operating regimes are explored.

This chapter demonstrates a strategy for virtual metrology of distributed temperatures

in VASIMR, based on OES measurements and a state-space model where the states

represent the distributed temperature profile. OES provides a non-invasive measurement

technique that is used as an output correction term for the VM scheme.

In this application, it is shown that the 2047 OES channels recorded from the

VASIMR plasma can be accurately represented by only 3 principal components for

temperature estimation. Use of the principal components as corrector terms in the
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Figure 5.15: Evolution of estimated outputs for the state-space model with different
initial conditions. With inaccurate initial conditions, the output of the model does not

follow the real output.

state-space model dramatically improves the capability of the model to recover from

unknown initial conditions and multiple system input changes. Although the experi-

ments completed in this chapter are performed off-line using pre-recorded data, the VM

calculations are straightforward computationally and could be performed with relatively

few adjustments for real time temperature estimation.

The results of this chapter were published in the Irish Signals and Systems conference

(ISSC) [252] and the IEEE Control Systems Magazine [253].
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Figure 5.16: Comparison of state prediction performance with and without error
feedback. With error feedback in place, state estimates converge to the true state
values. This case illustrates a realistic condition, where initial conditions are unknown.

Figure 5.17: Comparison of output prediction performance with and without error
feedback. Output predictions converge to the true outputs when output feedback is in
operation. In contrast, the open-loop estimation scheme produces inaccurate predic-

tions (estimates for ŷ1 are off the scale of this figure).
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Chapter 6

Global modelling of a plasma etch

process

In this chapter, the performance of global virtual metrology (VM) models are investi-

gated using an industrial etch process. In this context, global models refer to models

that are trained on a set of data and are then, without changes to the model, used to

estimate etch rate for all further wafers. The etch process studied is a multi-step shallow

trench isolation (STI) etch process in which trenches are formed on exposed areas of

a 200-mm diameter multilayered silicon wafer. Such trenches are ultimately filled with

insulating material to prevent electrical current leakage between components that are

formed in later processes. STI increases transistor-packing density, allowing for more

functionality and speed per unit area on wafer surfaces. In this chapter, details of the

etch process are first provided; following this, the global VM estimation performance is

examined.

6.1 Etch process description

This section provides an overview of the STI etch process being examined, describes

where this particular etch process fits into the semiconductor manufacturing cycle, de-

tails all of the measurements taken from the etch chamber, and addresses possible sources

of disturbances to the etch performance. For confidentiality reasons, details on the exact

chemistries and dimensions used in the process are not provided.
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6.1.1 Pre-etch wafer preparation

Silicon wafers undergo hundreds of process steps over approximately 30–40 days before

completion in a typical production cycle and the particular STI etch process examined

here is completed within the first ten processes.

Prior to the plasma etch process, layers of material are deposited on the surface of

each silicon wafer. First, a relatively thin insulating layer of silicon dioxide (the pad-

oxide layer) that insulates later layers from the wafer substrate material is thermally

grown on the bare silicon. On top of the insulating layer, a relatively thick layer (thicker

than the insulating layer by a factor of approximately 40) of silicon nitride is deposited

using a plasma-enhanced chemical vapour deposition process. The silicon nitride layer

acts as a hard mask during etching. The deposition and thermal growth processes are

well controlled, with typical standard deviations of 2% and 0.4% of the overall thickness

of the layers for the pad-oxide and nitride layers, respectively.

A layer of photoresist material is deposited on top of the nitride layer by spin coating.

Precise patterns are developed in the photoresist using ultraviolet photolithography.

Undeveloped photoresist is removed using a developer solution, exposing the underlying

nitride material where etching is required. An overview of photolithography technology

can be found in [27].

6.1.2 Plasma etch

The STI etch process comprises five different steps. Each step entails adjustments in the

chamber gas flow rates, the power applied to the powered electrode, and the pressure

in the etch chamber. A cross-sectional view of the wafer stack with the aims of the five

etch process steps labelled is presented in Figure 6.1 and each step is explained below:

1. A two-gas plasma is used to remove approximately 75% of the exposed nitride

layer in a timed etch.

2. A less aggressive etching chemistry is used to etch the remaining nitride layer.

Step 2 ceases in response to an endpoint signal from a monochromator installed

on the etch chamber. Hence, the time required for this etch step varies depending

on the etch performance.

3. Step 3 is an overetch step of a fixed duration. The overetch step ensures that no

silicon nitrite remains in the etched trenches so that the insulating pad-oxide layer

beneath is fully revealed. Depending on the amount of remaining silicon nitride in
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the trenches after Step 2, some of the pad-oxide layer is also removed during this

step.

4. The main trench etch is completed during Step 4, where a trench is etched in the

underlying silicon. This is a timed etch, the duration of which is decided off-line by

operators who attempt to compensate for drifting process parameters by adjusting

the etch time manually. A relatively aggressive etch chemistry is used.

5. The final step in the process is a timed etch to round the bottom of the etched

trenches and ensure the correct trench profile is achieved in all trenches on the

wafer surface. The etching gases are changed for this final step to achieve the

desired trench profile.

Figure 6.1: Cross-sectional view of wafer stack (not to scale). Trenches are etched
onto the wafer surface through a number of layered materials using a multi-step etch
process. This diagram shows the layers grown on the silicon wafer surface, along with

the material removed by each of the process steps.

6.1.3 Post etch processing

Each wafer undergoes several further processes after plasma etching before a measure-

ment of the trench depth is carried out. The photoresist material is first removed in the

ashing and sulphuric cleaning processes. Several iterations of oxide growth and chemi-

cal mechanical planarisation (CMP) are then completed to fill each trench with silicon

dioxide. Multiple iterations are used to ensure that trenches are filled uniformly and

that no air pockets are inadvertently formed. A phenomenon known as dishing can

occur during CMP, during which material is removed from trench openings accidentally,

leaving a non planar surface at the top of the trench. Finally, the nitride and pad-oxide
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layers are stripped (using hydrofluoric and phosphoric acid cleaning processes), leaving

the isolation trenches on the wafer surface with areas of silicon between them where

transistors are built in later manufacturing processes.

The depth of the trench is measured via reflectometry after the trenches have been

filled completely with silicon dioxide. Although dishing can affect the trench depth

measurement for some etch processes, the effects are relatively small (< 1%) when

compared to the overall trench depth for the process being studied. The trench is filled

before depth measurement so that the reflectometrer can be used to identify interference

between reflections from the top and bottom of the silicon dioxide.

6.1.4 Process drift

The greatest difficulty encountered during modelling and control of plasma etch processes

is that etch chamber conditions drift over time, altering process behaviour and yielding

unpredictable changes in etch depth. The drift in process behaviour occurs as the

chamber becomes conditioned by repeated etch operations. The conditioning process

occurs because contaminants from etch products and sputtered material from the wafer

surface are deposited on the walls of the chamber during wafer processing. The chamber

temperature drifts over each lot (batch of wafers) processed, varying across each lot as

more wafers are etched. On longer time scales, physical components on the etch machine

behave differently as they age and wear. Periods of idle time where processing is not

completed can also significantly contort the chamber performance.

6.1.5 Preventative maintenance

In an attempt to maintain a consistent etch performance, the drifting behaviour of the

process is counteracted through the use of preventative maintenance (PM) operations.

PM operations are maintenance operations carried out after a specific period of time,

or after a specific number of wafers are processed, even if the chamber is still operating

within specifications. PM operations are completed after approximately every 1000

wafers processed on each chamber for the process studied in this thesis.

There are two classifications of PM events that are carried out. Normal PM oper-

ations involve a physical clean of the inner chamber walls, the replacement of ceramic

chamber components and the chamber electrodes, and a full check on the operation

of the chamber. More comprehensive maintenance is carried out on a quarterly basis

when the vacuum seals on the chamber and the wafer loading mechanisms are replaced.
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During PM events, the etch tools are unavailable for wafer processing for up to fourteen

hours, representing a significant overhead in a semiconductor fab.

The aim of the PM operations is to restore the etch chamber to a nominal initial

state. Figure 6.2 shows the mean endpoint monochromator output for each wafer over

a period of four PM cycles. Deposition of materials inside the plasma chamber clouds

the viewing window for the monochromator as wafers are processed, resulting in lower

amplitude outputs. During PM operations, the viewing window is cleaned, restoring

the clear view of the plasma, creating a sawtooth-like signal shown in Figure 6.2. The

conditioning effect is also reflected in electrical measurements from the chamber, as

demonstrated in Figure 6.3, where the mean impedance during Step 4 of each wafer is

displayed. The changes brought about by PM events present difficulties for construction

of consistent etch rate VM models.

Figure 6.2: Endpoint monochromator output over four preventative maintenance
(PM) cycles. Sputtered material and etch products deposited on the chamber viewing
window attenuate the monochromator signal over each PM cycle. After each PM event,
the window returns to normal operation and the monochromator signal increases in

intensity.

The product mix also hinders the creation of consistent models of the etch chamber.

Wafers processed in the chamber come from different product lines, which are mixed in a

relatively random fashion and processed in order of arrival. The same etching chemistry

is used to etch each product, but as a result of different open area ratios on the wafer

surfaces and hence different etch responses, inconsistent etch depths are observed from

product to product.
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Figure 6.3: Mean impedance for Step 4 of each wafer. The impedance values undergo
a drifting pattern due to chamber conditioning as wafers are processed along with

discontinuities after preventative maintenance (PM) events.

Three mechanisms are in place to reduce the impact that chamber drift and PM

cycles have on the etch process behaviour:

1. Etch rate tests are carried out after each PM event to check that the chamber is

operating within specification. Wafers with blanket layers of different materials

are used for this purpose, where measurements of layer thickness before and after

processing, along with the etch time, are used to calculate etch rate. If the chamber

operates out of an allowable range, further PM operations are carried out until a

satisfactory etch performance is achieved.

2. After each PM event, conditioning wafers are etched in the etch chamber before

production material. The conditioning wafers are bare silicon wafers with no pho-

toresist. By etching these wafers the chamber is conditioned before production

material is etched. Even with this safeguard in place, in very sensitive processes,

up to 400 non-critical product wafers are processed in each chamber after PM

events before products requiring stricter control of etch depth are etched.

3. Chemical cleaning procedures are carried out before each lot of wafers is processed.

Chemical cleans involve running corrosive plasmas in the etch chamber when empty

to partly remove wall deposits from previous etching operations.
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In some etch processes, external disturbances to the etch depth achieved can arise

from upstream and downstream (pre-measurement) processes. For the process under

study in this thesis, the layers of material formed on the product wafers are created

using techniques that are reasonably well controlled and assumed to have negligible

deviation from expected values. Measurements of these variations are unavailable. The

error in etch depth measurements is also assumed to be negligible (see Section 6.2).

Although the procedures outlined above help to keep the chamber etch rate within

specifications, completely predictable and consistent etch depths are still not achieved.

As discussed in Section 6.1.6, a level of manual and automatic control is used to ensure

the minimum of product waste.

6.1.6 Current control methods

The plasma etch process under study is controlled using statistical process control (SPC),

where a control chart is analysed daily by a trained engineer who makes decisions regard-

ing the operation of the process. SPC is used with process measurements in fabrication

plants to warn operators of unusual deviations and trends in the measurements in order

to avoid impending product waste and process failure.

One of the principal determinant variables for the performance of the etch process

product material is known as the n-well resistance, or ρn−well. The ρn−well for each

wafer is measured electrically at end of line, but there is a linear relationship between

ρn−well and trench depth, given by

ρn−well = C1d− C2, (6.1)

where d is the trench depth, and C1 and C2 are constant values that depend on the

process. Estimates for ρn−well are calculated using measurements of the etch depth taken

downstream from the plasma etch process (discussed further in Section 6.2) and plotted

on control charts, where SPC rules are applied. Deviations from normal behaviour

trigger alerts to process engineers who diagnose any problems and take action to keep

the process in control.

Figure 6.4 shows the ρn−well values for a number of measured wafers and the SPC

limits used for process monitoring. The SPC limits shown in diagram are not sym-

metrically distributed around the target ρn−well value because there is greater tolerance

for errors resulting in over etched trenches than for errors resulting in under etched

trenches. Trenches that are deeper than specifications may still effectively electrically
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isolate transistors, whereas shallow trenches can result in crosstalk between transistors

in finished products.

Figure 6.4: Estimates of ρn−well from etch depth for a set of wafers with statistical
process control (SPC) limits marked. Manual control is implemented in an effort to
keep ρn−well values within the inner limits. Automatic SPC alarms trigger at the second
set of limits, where engineers examine the machine. The outer limits require all wafers

to be tested for trench etch depth, and usually result in wafer scrap.

Operators monitor the etch depth achieved by the process and adjust the main

trench etch time, that is the Step 4 etch time, to account for drift in the chamber. The

main etch time is specified in seconds, and ranges from 73 − 81 seconds. The Step 4

etch time is also adjusted manually to account for changes in product material, catering

for different open areas on the wafer surfaces. This manual, experience-based control

of the system is sufficient to maintain the trench depths of the product material within

specifications most of the time. However, with a metrology delay in the process of up

to two days, significant deviations in etch performance can be costly in terms of wafer

scrap before corrective action is implemented.

6.2 Measurements recorded

Sensors measure a number of variables during the etch process to monitor the sta-

tus of the plasma etch chamber and to monitor whether the etch process is behaving

within specifications. The data analysed in this chapter are obtained from three sources:
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etch process (EP) data recorded from the plasma tool, plasma impedance information

recorded from a plasma impedance monitor (PIM) sensor installed on the electric inter-

face to the etch chamber, and optical measurements of etch depth taken some time after

the etch process is completed.

6.2.1 Etch process data

Sensors pre-installed on the etch processing tool record tool related variables such as the

chamber pressure, chamber temperatures, matchbox component positions, and the gas

flow rates during the etch process.

Data are sampled at a frequency of approximately 1 Hz and are recorded on a central

database in the fabrication plant. These data are used both in an on-line fashion by

the chamber to warn of irregularities during operation and in an off-line fashion by

operators to discover possible causes of error for product wafers that do not perform to

specifications at end-of-line testing.

Summary statistics for each process step are calculated from the time series data to

reduce the amount of data for processing and to summarise the chamber behaviour for

each process step. The summary statistics are sufficient to identify wafer-level trends

and patterns in the etch process. The extracted statistics include mean values, standard

deviations, maximum values, minimum values, and signal ranges. These statistics are

extracted for each process step after the plasma has been given time to settle, based on

predefined time ranges as depicted in Figure 6.5. The time ranges are typically triggered

on the applied power signal.

Table 6.1 shows the variables recorded from the etch tool for step 4, the main etch

step. A complete listing of the collected variables for all process steps is provided in

Appendix A.

6.2.2 Plasma impedance monitor (PIM)

As described in Section 2.5.8, a plasma impedance monitor (PIM) is a sensor that is

installed between the matching network and the plasma electrodes that measures the

harmonics of current and voltage that are generated on the electrical supply lines to the

chamber by the non-linear impedance of the etching plasma.
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Figure 6.5: Example extraction of summary statistics from time series data. This
figure shows an example of the sections of PIM time series data used for the extraction
of mean and standard deviation statistics. The diagram depicts two steps of the etch

process.

In the trench etch process described in this chapter, PIM measurements are available

at the fundamental frequency 13.56 MHz, and at 52 harmonics of this frequency for the

main etch step of the plasma etch process.

Two separate Fourier analyses are performed by a digital signal processor in the PIM

unit as it collects the RF sensor measurements. The first analysis calculates the lower

frequency PIM variables, comprising values of voltage (V ), current (I), and phase (φ)

for the fundamental frequency and the first four harmonics, collectively named the lower

PIM variables. The second analysis is based on a different algorithm and produces V , I,

and φ at the fundamental frequency value, along with 52 harmonics, forming the upper

PIM variables. Both analyses operate on the same principals, and calculate amplitudes

for each harmonic of voltage, current, and the phase angle between them.

Only the values for current and voltage recorded at the fundamental frequency are

calibrated such that the recording scale corresponds correctly to units of amps and volts

respectively. The first five harmonics in the upper PIM variables are attenuated as a

result of a filtering effect in the processing units. To form a complete set of harmonics

from the PIM sensor, the lower PIM variables are used as measures of the first five

harmonics, and the remaining harmonics, from 5–52, are taken from the upper PIM
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Variable Name Description

RANGE-ENDPOINT A Range of endpoint signal recorded from
chamber monochromator A

MEAN-ENDPOINT A Mean value of endpoint signal recorded
from chamber monochromator A

MEAN-GAS FLOW2 Mean value of MFC2 flow rate
STD-DEV-GAS FLOW2 Standard deviation of MFC2 flow rate
MEAN-Gas FLOW7 Mean value of MFC7 flow rate
STD-DEV-GAS FLOW7 Standard deviation of MFC7 flow rate
MEAN-GAS FLOW6 Mean value of MFC6 flow rate
STD-DEV-GAS FLOW6 Standard deviation of MFC6 flow rate

MEAN-GAP Mean gap between upper and lower elec-
trodes

MEAN-UP ELECT TEMP Mean temperature of upper electrode
MEAN-LOW ELECT TEMP Mean temperature of lower electrode
MEAN-TV ANGLE Mean throttle valve angle
STD-DEV-TV ANGLE Standard deviation of throttle valve an-

gle
MEAN-CHAMBER PRESS Mean value of chamber pressure
STD-DEV-CHAMBER PRESS Standard deviation of chamber pressure

MEAN-RF LINE IMP Mean value of RF line impedance
MEAN-RF LOAD COIL POS Mean position of matchbox load coil
MEAN-RF LOAD MATCH PH Phase between pre and post match RF

waveforms
MEAN-RF MATCH 1 TUNE Mean position of matchbox tune coil
MEAN-RF REFLECTED Mean value of RF reflected from cham-

ber
STD-DEV-RF REFLECTED Standard deviation of RF power re-

flected from chamber
MEAN-RF MATCH 1 DC BIAS Mean DC Bias recorded on wafer chuck
MEAN-RF FORWARD GEN Mean RF power generated at generator
STD-DEV-RF FORWARD GEN Standard deviation of RF power gener-

ated

Table 6.1: Recorded parameters for step 4 of trench etch process.

variables. The exact operation of the Fourier transform algorithms used is proprietary

information belonging to Lam Research (Ireland) Ltd.

6.2.3 Etch depth measurement

Measurements of the etched trench depth are made downstream from the etch process

in the production cycle to monitor the etch process performance. There is a metrology
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delay of up to two days before the etch depth measurements are carried out because the

wafer undergoes further processing steps before metrology is completed, as described in

Section 6.1.3. Ultimately, the final product performance depends on measurements of

ρn−well at the end of the production line. However, ρnwell data is not available for the

data sets investigated in this chapter.

As discussed in section 6.1.3, trenches are filled with silicon dioxide after the etch

process. Measurement of trench depth is carried out optically using an Optiprobe mea-

surement tool. The OptiProbe operates using beam profile reflectometry (BPR) to

determine the thickness of silicon dioxide deposited in the etched trenches on the wafer

surface. BPR measures the intensity of light reflected from the surface of the wafer as

a function of the incoming angle of reflection. The reflected intensity changes in rela-

tion to the angle of reflection, optical properties of the measured material and thickness

of the material being measured. The material thickness is determined by fitting the

parameters of previously defined models to the recorded intensities.

The trench depth is measured at nineteen different points across each wafer and the

mean depth of these points is taken as the average etch depth for the wafer.

The measurement of trench depth for every wafer is impossible in a high volume

manufacturing environment due to the time overhead required. Hence, etch depth mea-

surements are carried out as intermittently as possible while still providing enough infor-

mation to monitor process performance. Wafers are processed in lots of 25 wafers in the

fabrication plant and while EP and PIM data are recorded for every wafer, trench depth

metrology is only performed for two wafers from approximately every third lot, resulting

in an average metrology rate of 4 wafers in 75, or approximately 5%. In measured lots,

the etch depths for wafers 13 and 25 are measured. Wafers 13 and 25 are chosen as

wafers that provide etch depth measurements that are indicative of the average etch

depth for the complete lot. Figure 6.6 shows a recorded EP variable and indicates the

wafers that undergo etch depth metrology.

The OptiProbe measurement system is an accurate non-destructive method of depth

measurement with a typical error of 0.83 nm. With a total trench depth of over 500 nm,

this error is negligible as a percentage.

For experimental work, process development, or troubleshooting, further information

on the etch process performance can be obtained by physically slicing etched wafers and

taking scanning electron microscope (SEM) photographs of the side profile of the etched

trenches. Collecting profile information with SEM photographs requires the destruction

of product wafers and as a result is seldom carried out.
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Figure 6.6: Frequency of etch depth metrology. This figure depicts an etch process
(EP) variable, the mean value of one of the endpoint monochromators installed on the
chamber, for every wafer processed. The wafers for which etch depth is measured are
marked. This particular section of process data has a relatively high density of etch

depth measurements.

6.3 Data set description

VM models are constructed for the industrial plasma etch process described in Section

6.1. This section describes the data sets collected from the process for VM and the

preprocessing undertaken to prepare the data for modelling.

6.3.1 Data collection

Data were collected from two etch chambers over a period of approximately six months.

As a result of logging errors and unexpected changes in the manufacturing environment,

the data set is not complete, and does not include all of the wafers processed through-

out the data collection period. At different times, sensors failed to measure variables

accurately, network servers failed to record data, and data became corrupted during

processing. Table 6.2 summarises the collected data from each etch chamber.

For Tool 1, EP data for 6238 wafers were recorded without the corresponding PIM

data and there are 3330 such wafers in the data set from Tool 2. The missing data are

unrecoverable as they were lost at the time of processing due to sensor failures in the
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Tool 1 Tool 2
Start date 07/06/2008 11/6/2008
End date 20/11/2008 26/8/2008
Number of wafers with EP data 18524 10718
Number of wafers with PIM data 12286 7388

Table 6.2: Summary of etch data collected. Data are collected from two separate
plasma etch chambers over a period of approximately six months.

fabrication plant. There are a number of chronological gaps in the data that can be seen

in Figure 6.7 where the data are depicted with respect to the time of collection.

Figure 6.7: Data available for virtual metrology. Errors in the fabrication plant data
collection system resulted in a large number of wafers for which there was only EP data
recorded. Blank spaces represent dates with no data available, even though there may

have been wafers processed during these times.

6.3.2 Raw data treatment

The sensor data from the plasma etch process are recorded routinely in the fabrication

plant and stored for a limited time on network servers. Data are stored in a binary

format consisting of time-series traces for all of the variables measured. As described
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in Section 6.2.1, summary statistics for variables of interest are extracted from the time

series data.

EP data are recorded along with the associated context data. Context data are

made up of a time-stamp, lot number, and wafer number for each wafer, along with

details of the processing tool used. Due to the particular computer infrastructure in the

fabrication environment, the PIM data are stored in a different location without any

context data apart from a time-stamp for each wafer. For the purposes of VM in this

thesis, the EP and PIM data files are imported into the MATLABr environment and

the PIM data are matched to the corresponding EP data on the basis of the time-stamp

to create a unified data set for further analysis and processing.

Downstream measurements of trench depth and the corresponding ρn−well estimates

are collected from a third location in the fabrication plant. These data points contain

context data for each lot measured, and so can be assigned to the correct wafer data in

the data set.

Because the etch time for the main etch step is varied manually by operators in the

plant as detailed in Section 6.1.6, the VM models in this thesis focus on the estimation

of overall average etch rate, which is calculated by dividing the measured trench depth

by the time taken for the main etch step.

6.3.3 Variable removal

EP data comprising a total of 131 different variables are collected over the five steps in

the etch process. Visual inspection of these variables, and an application of engineering

process experience, can immediately discount a number of the variables as irrelevant for

the purposes of VM of trench etch rate.

Firstly, the trenches are etched in step 4 of the process, and so it is a valid and logical

step to discard variables from Steps 1 and 2, where no etching of the silicon trenches

is carried out. Secondly, a number of variables can be removed that contain standard

deviation statistics and variables that remain constant or have very little variance over

the data set, for examples see Figure 6.8. In this manner, using visual analysis and

process experience, a further 41 variables are removed from steps 3, 4, and 5. A complete

listing of the removed variables is provided in Appendix B.

After the removal of the more obviously superfluous EP variables as described, 184

different variables remain in the data set, comprising 28 EP variables and 156 PIM

variables (52 harmonics each of V ,I, and φ).
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(a) (b)

Figure 6.8: Examples of variables removed from etch process (EP) data. Variables
with little or no information content, or those that relate to parameters not connected

with the main etch performance are removed.

6.3.4 Outlier Removal

Erroneous variable values are recorded in the data as a result of mechanical or electronic

glitches that occur during the operation of the etch tools and the recording processes.

Samples that contain errors are normally numerically distant from the majority of the

data and are considered to be outliers. The identification and removal of such data

points is advantageous as they can result in inaccurate models if used during VM model

training.

PCA along with the T 2 and Q statistics (see Section 3.5) are used to detect outliers

in the trench etch data sets. PCA is carried out on the EP data and the PIM data

separately. Samples are deemed as outliers when they exhibit unusually high T 2 or Q

statistics. The removal thresholds for each statistic are determined manually through

inspection of the statistics for each data set.

The EP data is mean centered and the standard deviation of each variable is nor-

malised during the PCA analysis, since the data contains a number of different variables

measured on different scales. A principal component model is constructed using the

normalised data. Figures 6.9 and 6.10 show the T 2 and Q-statistics calculated using the

EP data for each wafer from Tool 1 and Tool 2 respectively, along with the chosen cutoff

threshold for outliers. The Q-statistic is calculated using a principal component model

that explains 95.4% of the data set variance using 15 of the 28 available components.

All variables are included in the calculation of the T 2 statistic. Wafers which exhibit

substantially higher (by a factor of 5) T 2 and Q-statistic values than the majority of the

other wafers are identified as outliers.
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For example, in the EP data, the tool variable 5-MEAN-RF LOAD MATCH PH

shown in Figure 6.11 was recorded incorrectly for wafer 4015 from Tool 1. The value

recorded in error is clearly not within the normal distribution of the variable, and this

deviation results in large T 2 and Q values for the wafer in question, as depicted in Figure

6.9. Similar deviations in other EP variables are responsible for the high Q or T 2 values

of other wafers shown in Figure 6.9.

Figure 6.9: Q and T 2-statistics of each wafer recorded from Tool 1 for EP data.
Wafers with unusually high values for T 2 or Q values exhibit behaviour that is different

to rest of the data set.

The outlier detection process is repeated for the PIM variables. Each PIM variable

is mean centered and normalised to have unit variance. A number of wafers appear

as outliers as seen in Figure 6.12 and Figure 6.13, with signals such as those shown in

Figure 6.14 responsible for the outliers.

The outlying wafers with statistics above the thresholds shown on in Figures 6.9,

6.10, 6.12, and 6.13 are removed from the data set.

6.3.5 Final data set contents

After the removal of the variables deemed unnecessary for VM and the removal of out-

lying wafer data, a data set remains that is used for the development of VM models for

plasma etch rate.
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Figure 6.10: Q and T 2-statistics of each wafer recorded from Tool 2 for EP data. The
data from Tool 2 contains fewer extreme outliers than the data from Tool 1 shown in

Figure 6.9

Because a substantial number of wafers from each tool are missing the PIM data,

the data is divided into those wafers with EP data only, and the subset of those that

have both PIM and EP data. Table 6.3 summarises the wafers for which EP data are

available, and Table 6.4 summarises those wafers for which both EP and PIM data are

available.

Tool 1 Tool 2

Number of wafers with EP data 18400 10715
Number of etch depth measurements 789 358
Measurement frequency 4.29 % 3.34 %
Number of PM cycles 18 11

Table 6.3: Wafer information available with EP data for every wafer.

Tool 1 Tool 2

Number of wafers with EP and PIM data 12133 7365
Number of etch depth measurements 529 245
Measurement frequency 4.36 % 3.33 %
Number of PM cycles 12 8

Table 6.4: Wafer information available with EP and PIM data for every wafer.

The data set containing both EP and PIM data is used during global modelling of

the plasma etch rate so that comparisons between the etch rate estimates made using
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Figure 6.11: Etch process parameter “5-MEAN-RF LOAD MATCH PH” for all
wafers from Tool 1. The erroneous value for “5-MEAN-RF LOAD MATCH PH”
recorded for wafer 4015 causes corresponding high T 2 and Q-statistic values for this

wafer in Figures 6.9 and 6.10.

Figure 6.12: Q and T 2-statistics for PIM data of each wafer recorded from Tool 1

different sensor information can be made.
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Figure 6.13: Q and T 2-statistics for PIM data of each wafer recorded from Tool 2

Figure 6.14: The fourth harmonic of current from the plasma impedance monitor
(PIM) variables φ4 for Tool 1. The φ4 variable contains a potentially erroneous value

for wafer 3961 leading to extraordinarily high T 2 and Q statistics for this wafer.

6.4 Virtual metrology approach

Static models are employed to estimate the etch rate from the EP and PIM measure-

ments. The VM models focus on the estimation of etch rate, rather than ρn−well because
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physical measurements of ρn−well are unavailable. The use of time-series models is pre-

cluded because the etch rate measurements are not performed on a uniform basis. The

VM models are of the form

r̂(k) = f(u1(k), u2(k), · · · , um(k)), (6.2)

where r̂(k) is the estimated etch rate value for wafer k and u1(k), u2(k), · · · , um(k) are

the measurements taken from the chamber sensors during etching of wafer k. It is

assumed that the relationship between the sensor measurements and the plasma etch

rate is time-invariant for the global models.

To examine the performance of VM models for different circumstances, fifteen dif-

ferent variable selection/data reduction schemes and two data division schemes are ex-

amined.

6.4.1 Training, validation, and test data subsets

As described in Chapter 3, model estimation performance can be substantially more

accurate when tested using the data upon which the model is trained, whereas this level

of accuracy may not be representative of the model performance on previously unseen

data. Hence, different data are used for model building and for model testing. The

data used during the building of models are the training data and the unseen data used

for model evaluation are the test data. A third subset of validation data is sometimes

extracted from the training data before the training procedure and used to aid early-

stopping or cross validation procedures where necessary, as described in Section 3.4.3.

Ideally, the training data for global models are chosen so that they capture informa-

tion from the complete operating space of the system. Data from specifically designed

experiments are often used to train global models [11, 221]. In this work, however, only

past production data are used for model training. Although designed experiments are

preferable at times to capture more variation, the high value nature of semiconductor

processing means that such experiments can be prohibitively expensive in terms of wafer

scrap and tool down-time.

The proportion of data points used for the training, validation, and test data sets

is a user preference. For the purposes of this thesis, 50% of the wafers are set aside for

model training, 20% for model validation, and the remaining 30% are retained as unseen

data for model testing during model creation procedures.
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6.4.2 Input combinations

Fifteen different combinations of recorded variables are created from the data available

for use as input variables to virtual metrology models. The different input selections are

identified for the remainder of this thesis by the text given in bold in the list below.

1. EP: EP Data only. This variable selection contains only the variables recorded

directly from the etch tool. All PIM-derived variables are ignored. This data

set is the most cost effective since no additional sensors beyond the original etch

hardware are required. There are 28 EP variables included in this selection from

steps 3-5 of the etch process.

2. EP-Step: EP Data with stepwise selection. The stepwise selection algorithm is

applied to the EP data set before modelling. The reduced set of variables selected

by the stepwise algorithm are used as the inputs to the VM models.

3. PIM0: PIM data for the fundamental harmonic only. This set of variables contains

the PIM data for the fundamental values of voltage, current, and phase from the

PIM sensor for Step 4 along with the calculated values for impedance, power,

reactance and resistance (Equations (2.34) - (2.37)). The fundamental values of

current, voltage, phase, and power listed in Appendix A for steps 3 and 5 of the etch

process are also included. In total, 19 variables are included in this combination

of variables.

4. PIM0-Step: PIM0 variables reduced using stepwise selection. The stepwise selec-

tion algorithm is used to identify a subset of the PIM0 variables at the fundamental

frequency.

5. PIM5: PIM data for the first five harmonics. This corresponds to the mean values

of the first five harmonics each of current, voltage and phase that are collected by

the PIM sensor for each wafer.

6. PIM5-PCA: This data set consists of principal components extracted from the

PIM5 variables. Enough principal components are included such that 90% of the

variance in the data is explained.

7. PIM5-Step: PIM5 variables reduced using stepwise selection. The stepwise se-

lection algorithm is used to identify a subset of the PIM5 data to be used as input

variables for the VM models.

8. PIM: Complete PIM data. This selection of input variables contains all 52 har-

monics current, voltage and phase that are collected by the PIM sensor.
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9. PIM-PCA: The input combination consists of principal components extracted

from the complete set of PIM variables. Sufficient principal components to explain

90% of the data variance are included.

10. PIM-Step: Complete set of PIM variables reduced using stepwise selection. Step-

wise selection is employed to select a subset of input variables from the complete

collection of PIM variables.

11. XRZP5: Calculations for reactance (X), resistance (R), impedance (Z), and power

(P) for the first five harmonics for the main etch step (Step 4). Equations (2.34)

- (2.37) are used to calculate the values.

12. XRZP5-PCA: Principal components extracted using PCA analysis of the XRZP5

variables. Sufficient components to explain 90% of the data variance are included

as model inputs.

13. XRZP5-Step: Stepwise selection of variables from the XRZP5 variables.

14. EP-PIM0: Combination of all EP variables with PIM0 variables.

15. EP-PIM0-Step: Stepwise selection of the EP-PIM0 variables.

6.4.3 Chronological and interleaved data

The training, validation and test data sets are constructed in two separate ways to

examine the capabilities of the VM schemes.

1. Firstly, to examine the time extrapolation capabilities of developed models, the

data set is kept in chronological order such that the training and validation data

are formed using wafers processed before the wafers in the test data, as depicted

in Figure 6.15. The first 70% of the wafers form the training and validation data.

The validation data is interleaved within the training set, and makes up 20% of

the full data set. The test data comprises the final 30% of the wafers.

2. Secondly, to investigate whether model accuracy is improved when information

from the same operational region as that of the test wafers is included in the

model training data sets, an interleaved data set is used, where the training and

test wafers are interleaved throughout the complete data set. The data are divided

for training, test, and validation processes in the same proportions as for the

chronological data set. A depiction of the interleaved data division scheme is

presented in Figure 6.16.
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Figure 6.15: Chronological data division scheme. Data is divided into training, vali-
dation, and test data sets such that the test data is made up of wafers that have been

processed after the training and validation wafers.

Discrepancies in etch rate estimation accuracy between models created using the

two data sets provides information on how model performance is affected by changes in

the system behaviour. The chronological data set investigates whether past data can be

used to summarise the operating space of the etch tool in advance of system changes

such as PM events. Global models created using the chronological data set extrapolate

etch rate estimates beyond the test data range.

The interleaved data set is employed to investigate whether model estimation accu-

racy is improved when information from the same operational region as that of the test

wafers is included in the model training data sets. The interleaved scheme is used purely

for investigative purposes since such a scheme is unrealistic in an online system but the

scheme gives some measure of the merit of a more comprehensive data logging/metrology

philosophy.

6.5 Algorithm details

The seven modelling techniques described in Chapter 3 are used to model the global

variations in etch rate in the data sets. This section details the implementation details
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Figure 6.16: Interleaved data division scheme. In this data division scheme, the
training, test and validation wafers are interleaved throughout the full data set. This
data division scheme can reveal whether wafers that are chronologically close to test

wafers provide more useful information for modelling than those further apart.

of the modelling techniques for which decisions on model structure and/or training

technique are required.

6.5.1 Stepwise regression parameters

The stepwise regression models are developed using limiting p-values of 0.05 and 0.1

for the FtoEnter and FtoRemove tests respectively, as recommended in the text by Draper

and Smith [47]. Lower p-values correspond to higher F -test values, and as mentioned

in Section 3.3, choosing FtoEnter > FtoRemove makes it more difficult to add variables to

the model than to remove them.

6.5.2 ANN structure

Figure 6.17 shows the best validation data estimation mean squared error (MSE) for

different 2-layer ANN structures when modelling etch rate using data representative of

the etch rate data set. The validation data MSE is the MSE achieved on the validation

data set during model training. In such tests with the plasma etch data set, ANNs with

a single hidden layer are found to yield similar estimation accuracy to those with two

hidden layers. Hence, the ANNs used in this thesis all employ a single hidden layer
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of neurons because the single-layered ANNs are less complex and require less training

time than ANNs with two hidden layers, while still achieving comparable estimation

accuracy.

Figure 6.17: Validation data mean squared error (MSE) for different ANN structures
on sample etch rate data. A general increase in validation data MSE is seen in this

figure for ANNs with increasing numbers of neurons.

The ANNs are trained using the Levenberg-Marquardt (LM) optimisation algorithm.

Early stopping is employed using separate training and validation data sets to find the

optimal training stop-point. The number of hidden neurons in the single hidden layer

of each ANN is varied from 5 to 15 in an attempt to find the best network size. Ten

random initialisations of the weight matrices are investigated for each network size. The

best network is selected by finding the network with the lowest validation data MSE

(for etch rate estimation).

6.5.3 GPR covariance function

As described in Section 3.8.4, a number of different covariance functions can be speci-

fied during the development of GPR models. Ideally, the choice of covariance function

is made using a priori knowledge of the data to be modelled. Unfortunately, the plasma

etch data set is not clearly suited to any particular choice of covariance function be-

cause the relationships between the input variables and the plasma etch rate are largely

unknown.
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An investigation into the estimation accuracy of GPR models trained using different

covariance functions is carried out in [254] and it is found that GPR model performance

is relatively insensitive to covariance function choice for the plasma etch data set. Excep-

tionally poor prediction performance is only observed when using squared exponential

covariance functions with input selections that include a large number of input variables.

The GPR-based models examined in this thesis employ a covariance function with

a constant term, a rational quadratic component, and a random noise component. The

rational quadratic (RQ) covariance function is used to allow more flexibility than a

squared exponential component. A different length scale is used for each input variable

as described in Section 3.8.4. Hence, the covariance function has the form:

k(~xi, ~xj) =
1

s
+ ν

(
1 +

(~xi − ~xj)Q−1(~xi − ~xj)T
2%

)−%
+ σ2nδ(i, j), (6.3)

where s is the hyperparameter for the constant term, Q = diag(qii) ∈ Rp×p is a

diagonal matrix of ARD parameters (one for each of the p input variables) for the RQ

covariance function, ν is the hyperparameter determining the degree of variability for

the RQ function in the output space, % is a hyperparameter determining the shapes of

RQ function, σ2n is the noise covariance, and δ(i, j) is the Kronecker delta function such

that δ(i, j) = 1 if i == j, 0 otherwise. Hence, a total of p+ 4 hyperparameters must be

optimised for input data of dimension p.

6.6 Virtual metrology results

The plasma etch rate is a challenging variable to model because strong relationships do

not exist between the VM input variables and etch rate. The mean value of etch rate is

approximately 66 nm/s, with a standard deviation of 1.8 nm/s. Because the mean etch

rate is relatively large compared to the etch rate standard deviation, a model that simply

produces a constant value at the mean would be reported with a MAPE of only 2.3 %.

Although the etch rate estimates from each model are evaluated principally using the

the mean absolute percentage error (MAPE), to provide a more detailed insight into the

modelling results reported in this section, the coefficient of determination, or R2 value,

for the estimates from each model is also reported. Although the MAPE reported for a

model that estimates a constant mean value for each wafer is as low as 2.3 %, the R2

value will be 0, thus revealing the inadequacies of the estimation.

The VM results using the chronologically ordered data sets from Tools 1 and 2 are

provided in Tables 6.5 and 6.6 respectively, and the results using the interleaved data set
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Tool 1 Chronological
  Model Type

  LSR Stepwise LARS PCR PLS NN GPR

 Data Type R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE

1 EP 0.31 1.24 0.32 1.19 0.25 1.23 0.24 1.27 0.25 1.23 0.14 1.51 0.17 1.29
2 EP-Step 0.32 1.19 0.32 1.19 0.28 1.17 0.29 1.56 0.28 1.17 0.11 2.07 0.24 1.21

3 PIM0 0.06 1.35 0.09 1.32 0.14 1.30 0.11 1.65 0.12 1.34 0.03 1.74 0.02 1.47

4 PIM0-Step 0.09 1.32 0.09 1.32 0.08 1.32 0.16 1.73 0.08 1.32 0.20 1.37 0.02 1.40

5 PIM5 0.18 1.69 0.12 1.98 0.15 1.28 0.09 2.30 0.16 1.24 0.17 1.92 0.07 1.76

6 PIM5-PCA 0.07 2.32 0.08 2.29 0.06 1.63 0.03 1.70 0.06 1.63 0.09 1.56 0.04 1.87

7 PIM5-Step 0.12 1.98 0.12 1.98 0.12 1.56 0.07 2.22 0.15 1.47 0.14 2.10 0.09 2.03
8 PIM 0.02 2.61 0.13 1.55 0.25 1.19 0.19 1.42 0.21 1.22 0.13 1.37 0.08 1.40
9 PIM-PCA 0.23 1.44 0.24 1.42 0.27 1.20 0.10 1.45 0.21 1.24 0.09 1.68 0.07 1.47

10 PIM-Step 0.13 1.55 0.13 1.55 0.14 1.35 0.15 1.58 0.14 1.35 0.01 2.09 0.17 1.43
11 XRZP 0.16 1.47 0.10 1.31 0.19 1.22 0.15 2.07 0.21 1.21 0.10 1.47 0.05 1.46
12 XRZP-PCA 0.15 2.11 0.15 2.17 0.15 1.57 0.15 1.74 0.15 1.54 0.08 1.61 0.13 1.41
13 XRZP-Step 0.10 1.31 0.10 1.31 0.10 1.29 0.16 1.51 0.09 1.30 0.12 1.31 0.20 1.31

14 EP-PIM0 0.29 1.13 0.08 1.31 0.21 1.19 0.11 1.59 0.20 1.22 0.09 1.50 0.11 1.41

15 EP-PIM0-Step 0.08 1.31 0.10 1.33 0.06 1.29 0.08 1.68 0.06 1.29 0.05 1.44 0.17 1.23

Table 6.5: Global Modelling results for Tool 1 data in chronological order.

are detailed in Tables 6.7 and 6.8. The columns of each table are coloured to highlight

the best performing models based on MAPE and to allow the identification of trends

in the VM results. The colour ranges from green to red to highlight the best and worst

performances, respectively.

The results in Tables 6.5 – 6.8 suggest that there is no modelling technique or input

variable selection, among those examined, that produces substantially better results

than the others across both of the tools or data set ordering options. However, some

trends and patterns in modelling performance are revealed in the results. The results are

examined in further detail in Sections 6.6.1 and 6.6.2 before more general conclusions

are drawn from the modelling results in Section 6.7.

6.6.1 Chronologically ordered data

The EP variables proved to be the most effective input variables for estimation of etch

rate for Tool 1 across the majority of the modelling techniques investigated. The best

results are obtained through the use of the stepwise selection algorithm to select key EP

variables followed by the use of the PLS or LARS modelling algorithms that achieve a

test data accuracy of 1.17% MAPE with an R2 value of 0.28. The etch rate estimates

from the PLS algorithm are shown in Figure 6.18. Although the estimates shown in

196



Global modelling

Tool 2 Chronological
  Model Type

  LSR Stepwise LARS PCR PLS NN GPR

 Data Type R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE

1 EP 0.03 2.18 0.08 2.24 0.06 1.95 0.00 1.60 0.00 1.67 0.03 2.36 0.00 1.87
2 EP-Step 0.08 2.24 0.08 2.24 0.07 2.27 0.00 1.84 0.07 2.27 0.04 2.12 0.16 2.17

3 PIM0 0.00 2.16 0.14 1.57 0.11 1.39 0.20 1.27 0.10 1.40 0.21 1.42 0.26 1.73

4 PIM0-Step 0.14 1.57 0.14 1.57 0.14 1.40 0.14 1.57 0.14 1.40 0.10 1.60 0.16 1.56

5 PIM5 0.18 1.36 0.11 1.53 0.23 1.20 0.15 1.57 0.24 1.19 0.03 1.68 0.23 1.63

6 PIM5-PCA 0.07 1.47 0.04 1.72 0.08 1.37 0.28 1.70 0.09 1.34 0.01 2.24 0.10 1.39

7 PIM5-Step 0.11 1.53 0.11 1.53 0.16 1.35 0.13 1.51 0.11 1.43 0.12 1.51 0.30 1.12
8 PIM 0.25 7.54 0.26 2.14 0.14 1.30 0.01 1.59 0.14 1.32 0.26 4.18 0.30 1.27
9 PIM-PCA 0.07 1.47 0.12 1.41 0.10 1.31 0.28 1.13 0.18 1.25 0.08 2.21 0.16 1.37

10 PIM-Step 0.26 2.14 0.26 2.14 0.15 1.28 0.17 1.57 0.08 1.53 0.22 1.99 0.32 1.33
11 XRZP 0.23 1.32 0.28 1.20 0.38 1.04 0.20 1.21 0.30 1.09 0.21 1.49 0.21 1.39
12 XRZP-PCA 0.17 1.23 0.27 1.16 0.28 1.16 0.38 1.10 0.25 1.18 0.09 1.28 0.07 1.36
13 XRZP-Step 0.28 1.20 0.28 1.20 0.37 1.13 0.43 1.28 0.34 1.15 0.29 1.35 0.26 1.32

14 EP-PIM0 0.07 2.38 0.05 2.16 0.03 1.87 0.06 1.50 0.07 1.46 0.02 1.90 0.00 1.79

15 EP-PIM0-Step 0.05 2.16 0.05 2.16 0.04 2.20 0.00 1.92 0.03 2.15 0.02 2.47 0.02 2.08

Table 6.6: Global Modelling results for Tool 2 data in chronological order.

Tool 1 Interleaved
  Model Type

  LSR Stepwise LARS PCR PLS NN GPR

 Data Type R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE

1 EP 0.68 1.19 0.68 1.20 0.66 1.24 0.66 1.19 0.66 1.25 0.49 1.54 0.65 1.27
2 EP-Step 0.68 1.20 0.68 1.20 0.68 1.20 0.57 1.40 0.68 1.20 0.68 1.21 0.67 1.20

3 PIM0 0.63 1.31 0.63 1.32 0.63 1.32 0.56 1.41 0.63 1.32 0.63 1.33 0.64 1.25

4 PIM0-Step 0.63 1.32 0.63 1.32 0.63 1.32 0.58 1.38 0.63 1.32 0.58 1.41 0.64 1.28

5 PIM5 0.69 1.19 0.69 1.19 0.69 1.19 0.56 1.38 0.69 1.19 0.67 1.20 0.68 1.15

6 PIM5-PCA 0.56 1.38 0.54 1.40 0.56 1.38 0.56 1.39 0.56 1.38 0.62 1.27 0.69 1.18

7 PIM5-Step 0.69 1.19 0.69 1.19 0.68 1.20 0.53 1.42 0.69 1.19 0.70 1.20 0.69 1.17
8 PIM 0.60 1.40 0.70 1.17 0.69 1.18 0.73 1.12 0.71 1.15 0.63 1.33 0.69 1.16
9 PIM-PCA 0.73 1.12 0.72 1.15 0.70 1.16 0.68 1.21 0.71 1.15 0.64 1.29 0.72 1.11

10 PIM-Step 0.70 1.17 0.70 1.17 0.70 1.19 0.64 1.28 0.70 1.19 0.69 1.20 0.70 1.15
11 XRZP 0.69 1.17 0.67 1.22 0.69 1.17 0.57 1.39 0.68 1.17 0.71 1.13 0.70 1.17
12 XRZP-PCA 0.57 1.39 0.57 1.39 0.57 1.37 0.57 1.36 0.57 1.37 0.69 1.21 0.70 1.18
13 XRZP-Step 0.67 1.22 0.67 1.22 0.67 1.22 0.55 1.41 0.67 1.22 0.69 1.17 0.65 1.25

14 EP-PIM0 0.67 1.21 0.69 1.19 0.66 1.23 0.63 1.28 0.65 1.27 0.63 1.29 0.63 1.29

15 EP-PIM0-Step 0.69 1.19 0.69 1.19 0.69 1.20 0.63 1.27 0.69 1.20 0.64 1.24 0.70 1.14

Table 6.7: Global Modelling results for Tool 1 data in interleaved order.

Figure 6.18 accurately capture the large-scale, low frequency etch rate variations in the

data, the smaller-scale, high-frequency fluctuations are not modelled accurately. Since
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Tool 2 Interleaved
  Model Type

  LSR Stepwise LARS PCR PLS NN GPR

 Data Type R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE R2 MAPE

1 EP 0.26 1.35 0.28 1.27 0.33 1.21 0.29 1.28 0.32 1.26 0.31 1.40 0.26 1.24
2 EP-Step 0.28 1.27 0.28 1.27 0.27 1.25 0.27 1.26 0.27 1.25 0.22 1.44 0.33 1.21

3 PIM0 0.38 1.21 0.31 1.18 0.36 1.18 0.29 1.19 0.37 1.17 0.52 1.15 0.63 0.81

4 PIM0-Step 0.31 1.18 0.31 1.18 0.31 1.16 0.31 1.18 0.31 1.16 0.36 1.18 0.45 1.04

5 PIM5 0.45 1.08 0.42 1.12 0.36 1.13 0.23 1.27 0.43 1.11 0.42 1.11 0.57 0.91

6 PIM5-PCA 0.22 1.28 0.22 1.28 0.25 1.23 0.19 1.32 0.25 1.23 0.35 1.21 0.57 0.93

7 PIM5-Step 0.42 1.12 0.42 1.12 0.43 1.10 0.21 1.30 0.43 1.10 0.14 1.39 0.49 1.05
8 PIM 0.12 3.68 0.36 1.33 0.43 1.10 0.40 1.15 0.52 1.11 0.35 1.25 0.43 1.06
9 PIM-PCA 0.38 1.18 0.38 1.17 0.37 1.16 0.36 1.17 0.37 1.16 0.43 1.12 0.48 1.02

10 PIM-Step 0.36 1.33 0.36 1.33 0.37 1.26 0.37 1.18 0.37 1.26 0.41 1.15 0.44 1.06
11 XRZP 0.48 1.11 0.38 1.18 0.49 1.10 0.42 1.12 0.49 1.10 0.53 1.09 0.63 0.83
12 XRZP-PCA 0.42 1.12 0.41 1.11 0.42 1.07 0.42 1.12 0.44 1.10 0.20 1.31 0.55 1.01
13 XRZP-Step 0.38 1.18 0.38 1.18 0.38 1.16 0.37 1.15 0.38 1.16 0.38 1.16 0.39 1.12

14 EP-PIM0 0.31 1.49 0.31 1.20 0.37 1.13 0.31 1.25 0.34 1.19 0.33 1.15 0.48 0.97

15 EP-PIM0-Step 0.31 1.20 0.31 1.20 0.30 1.18 0.32 1.17 0.30 1.18 0.40 1.11 0.51 1.04

Table 6.8: Global Modelling results for Tool 2 data in interleaved order.

the test data do not exhibit a great deal of low frequency variation and the high frequency

variations are not captured, the reported R2 values are relatively low.

For Tool 2, the results in Table 6.6 suggest that the models using information from

the PIM sensor produce superior estimates of etch rate for chronologically ordered data

than models using the EP variables. In particular, all of the modelling techniques, except

for GPR, estimate the etch rate values most accurately when using the XRZP5 variables

as model inputs. The best modelling result is shown in Figure 6.19 and is achieved using

a LARS model with the XRZP5 variables, achieving a MAPE of 1.04 and R2 of 0.38.

The poor estimation results produced by the models using EP variables for Tool 2

occur partly as a result of an substantial change in etch rate behaviour due to a PM

event in the test data. The estimates from a LARS model using the EP data set as VM

input variables are shown in Figure 6.20, where the final PM event occurs at wafer 225.

Inaccurate estimation of the plasma etch rate is observed after this PM event for all VM

models using the EP data from Tool 2, suggesting that, contrary to the PIM variables,

the EP variables do not contain sufficient information to model the changes caused by

the final PM event in the data.
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Figure 6.18: PLS model etch rate estimation for Tool 1 chronological data. While
the general trend of the etch rate variations is captured by the model, high frequency

changes are not.

6.6.2 Interleaved data

The estimation results from models using the interleaved data are substantially different

to the results from those using the chronological data. For Tool 1, Table 6.7 suggests

that the predictions from models using the PIM variables are more effective for etch

rate estimation. Most of the modelling techniques investigated perform with similar

accuracy, with the exceptions of PCR, which produces poor results for all input variable

combinations but PIM, and GPR regression, which performs relatively reliably for the

majority of input variable combinations. The best overall result for the interleaved data

from Tool 1 is achieved using a GPR-based model using PCA-reduced PIM variables

(MAPE of 1.11 % and R2 0.72). The estimates from this model are shown in Figure

6.21. The interleaved estimation results for Tool 2 shown in Table 6.8 also highlight

GPR as a superior modelling technique to the others investigated since it produces the

most accurate predictions for 13 out of the 15 input variable combinations.

The fact that models perform well using interleaved data sets is to be expected since,

unlike the chronologically ordered data sets, in the interleaved sets the training data are

numerically close to the test data. This numerical proximity arises as the training and

test data consist of wafers that are from the same operational spaces.
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Figure 6.19: LARS model etch rate estimation for Tool 2 chronological data. There
is less overall variation and fewer wafers measured in the data recorded from Tool 2

than from Tool 1.

The best estimates for the interleaved data from Tool 2 are produced by a GPR

model using the PIM0 variables as model inputs; The estimates from this GPR model

follow etch rate with a MAPE of 0.81 and R2 value of 0.63, as shown in Figure 6.22

6.7 Discussion

6.7.1 Input combinations

There does not appear to be one input selection technique that demonstrates signifi-

cantly more accurate VM performance across all of the tool and modelling techniques

investigated for the data considered, but rather, particular input selections appear to

suit different situations. For Tool 1, the EP data produces consistently good results for

the majority of modelling techniques when the data is in chronological order, but this

is bettered by the inputs using PIM data for interleaved data. The calculated values for

the reactance, resistance, impedance, and power (XRZP5 data) lead to accurate etch

rate estimates for the Tool 2 data in chronological order, but this superiority is not as

clear cut during the interleaved data investigations.
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Figure 6.20: LARS model using EP variables for Tool 2. The etch rate estimates for
the final 25 wafers of the test data set are inaccurate. This inaccuracy is a result of a
PM event that changes the chamber characteristics in such a way that is not reflected
in the EP variables. Similar results are seen for all models using EP variables to model

etch rate variation in the Tool 2 data set.

It could be argued on the basis of the Tool 1 chronological results that the consid-

erable cost of PIM sensor installation is not offset by appreciable increases in etch rate

prediction accuracy using the PIM measurements. However, it is only the models that

use PIM variables that successfully estimate the changes in etch rate caused by the final

PM event in the Tool 2 test data, as shown in Figure 6.20.

Since the data set available is relatively small, it is impossible to draw comprehensive

conclusions that will apply to all situations. However, the global modelling results can

be used to gain an understanding of the achievable accuracy within the limitations of

the measurement frequency in the data.

6.7.2 Modelling techniques

Similarly, no modelling technique stands out with substantially better performance

across all of the tool and input variable combinations. The LARS and PLS algorithms

produce relatively good results over the course of the investigations. ANNs perform

on par with the other techniques except for the Tool 1 chronological data. Principal

component regression performs poorly on the interleaved data sets, and when used on

the EP data in chronological form. Poor PCR performance is expected with the EP
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Figure 6.21: GPR model etch rate estimates using PIM-PCA inputs on interleaved
data from Tool 1. Models using interleaved data are generally more accurate than those
using chronologically ordered data since the training data contains information more
relevant to the test data. As with the results produced by models using chronological

data, the high frequency fluctuations in etch rate are not modelled accurately.

variables as many of the EP variables are uncorrelated and hence not ideally suited for

compression using PCA.

As expected, LSR fails when a large number of input regressor variables are presented

during training due to rank deficiency in the input data matrix. For example, inaccurate

results, due to poorly conditioned input matrices, can be seen for LSR models using the

full set of PIM data. Between the two LSR-based techniques with variable selection,

LARS models perform better than the stepwise regression models for almost all input

selections.

GPR models emerge as the most accurate modelling technique for the interleaved

data. For the chronological data, the GPR models do not produce the most accurate etch

rate estimates, but have the added advantage over other techniques of easily calculable

confidence limits on all estimates. It is important to have an measure of the degree of

confidence in the VM estimates, in addition to the estimation itself [234]. GPR models

naturally permit confidence intervals to be established based on the amount of training

data available in a given operational space. If an estimation is required in an area

with little training data, confidence intervals are correspondingly large. 95% confidence
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Figure 6.22: GPR model using PIM0 variables to model interleaved data from Tool
2.

limits on the estimates calculated using the GPR models generally encapsulate the high

frequency fluctuations in etch rate for the chronological data, as shown in Fig. 6.23.

Figure 6.23: Test wafer etch rate estimates from a global GPR model using stepwise
selected EP variables as model inputs. 95% confidence intervals on the estimates are

also depicted.
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6.7.3 Data ordering

Model MAPE performance is better when interleaved data sets are used to build and

test the VM models than when chronological data sets are used. For the interleaved

data sets, the effect of PM events on the model performance is reduced because the

training data originates in the same operational space (PM cycles) as the test data.

The improvement in estimation accuracy lends itself to the assumption that inter-PM

variation for each wafer is captured in the neighbouring wafers from the same PM cycle.

In comparison to models trained using interleaved data sets, models that use chrono-

logically ordered data sets are trained on wafer information that contains relatively little

information about the operational space of the wafers in the test data set. The chrono-

logical models fail to accurately model the etch rate after a significant maintenance

event occurs. As seen in Section 6.6.1, the effect of an influential PM event is partly

responsible for the poor prediction results produced by models using EP data from Tool

2. The inability to accurately predict etch rate behaviour in future PM cycles is one of

the main disadvantages of static global-based models in etch process modelling.

Relatively large improvements in R2 values are seen for models using the interleaved

data sets when compared to those using the chronological data sets. The improvement in

R2 is somewhat misleading as it is not wholly a result of improved model accuracy, but

is instead primarily an artifact of the test data sets used to evaluate model performance.

As depicted in Figure 6.24, for Tool 1, the etch rate for the interleaved test data span

a much larger range than the etch rate for the chronological test data. Because the

VM models can follow large-scale, low-frequency fluctuations in etch rate, but fail at

accurately estimating smaller, high-frequency fluctuations, the larger range of etch rate

values contained in the interleaved test data increases the reported R2 values. This

increase in R2 value is more pronounced in the Tool 1 results than in the Tool 2 results

because the first section of etch rate measurements from Tool 1 contains considerably

more variation than the later sections. As a result, the R2 values listed in Tables 6.5 and

6.6 are not directly comparable to those in 6.7 and 6.8. The MAPE values, however, are

comparable between the data sets.

6.7.4 Inter-machine compatibility

The issue of inter-machine compatibility is highlighted by the fact that models using

the same input variables perform very differently on different etch chambers. Although

both of the tools used in the analysis are physically identical, processing the same mix

of wafers, and operating in the same fabrication environment, the relationships between
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Figure 6.24: Etch rate distributions in training and test data sets from Tool 1. Boxes
show 25th to 75th quartile ranges, whiskers extend to 2.7 σ, and other values are marked
with crosses. The chronological test data etch rate is restricted to a smaller range of

etch rate values than the other data sets.

Tool 1 Tool 2

3-MEAN-ENDPT STEP TIME 3-MEAN-RF LINE IMP
3-MEAN-RF LOAD COIL POS 4-MEAN-ENDPOINT A
4-MEAN-LOW ELECT TEMP 4-MEAN-RF MATCH 1 DC BIAS
4-MEAN-RF MATCH 1 TUNE 5-MEAN-LOW ELECT TEMP
4-MEAN-UP ELECT TEMP 5-MEAN-RF LOAD MATCH PH

5-MEAN-LOW ELECT TEMP
5-MEAN-UP ELECT TEMP

5-MEAN-RF MATCH 1 TUNE
5-MEAN-RF LOAD COIL POS

5-MEAN-RF LINE IMP

Table 6.9: Stepwise selected EP variables for Tool 1 and Tool 2. There is only one
variable in common between the two sets of selected variables.

the sensor recordings and the etch performance of each is remarkably different. Table 6.9

shows the variables selected from the EP data from both tools by the stepwise selection

algorithm for modelling of etch rate using chronologically ordered data. In Table 6.9,

only one variable appears in the models for both machines. This lack of model similarity

suggests that there is only a weak relationship between the etch rate and the model input

variables. Hence, the structural relationship between the input variables and the etch

rate is sensitive to relatively small changes in the chamber characteristics.

The lack of similarity in the variables recorded in both machines prevents models

developed on one machine being transferred to another. One would expect differences in

the parameter values between models, but not large structural changes. This is one of

the most difficult challenges faced in VM modelling of such complex systems. Machine

specific models, or models capable of adapting to individual machine performance are

required to overcome this challenge.
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6.7.5 Summary

While the overall trends in etch rate are approximated by the estimates from the best

models discussed in Sections 6.6.1 and 6.6.2, no model accurately follows the high fre-

quency fluctuations in etch rate observed in the data. These high frequency etch rate

changes are either not reflected in the variables that are used as VM model inputs, or the

variations arise elsewhere in the manufacturing process. GPR-based models, however,

do generally contain these etch rate variations within 95% confidence intervals.

An interleaved data set is used to examine the effect of including data from the same

operational space as the test data in the training data for VM models. Substantial in-

creases in accuracy are observed for models using the interleaved data over models using

the chronologically ordered data, demonstrating the importance of using comprehensive

training data sets that span the operational space of the test data during the develop-

ment of global models where possible. The VM models using the interleaved data sets

provide some insight on the advantages of a more comprehensive data set and metrology

philosophy.

The results suggest that there is no single ideal solution to the problem of globally

modelling the complex plasma etch process examined here. The best achievable accu-

racy using seven different modelling techniques, on two different plasma etch machines,

with 15 different input combinations has been investigated and found to be approxi-

mately 1.1% MAPE. This level of accuracy is achieved with a relatively low metrology

frequency compared to the frequency of process disturbing PM events (approximately 40

etch rate measurements per PM cycle).

Global models based on larger data sets could be constructed if more data was

available, but these models may still fail after a PM event in the future that results in

behaviour outside of the operational space of the training data. In order to maximise

etch rate estimation accuracy across PM events, a number of local etch-rate modelling

strategies are considered in the next chapter.
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Local modelling of a plasma etch

process

The global models explored in Chapter 6 failed to consistently and accurately estimate

etch rate variations after preventative maintenance (PM) events are carried out on the

etch chamber in the process studied. The validity of the global models is also brought into

question as the process drifts due to repeated etch operations that condition the chamber.

While global models trained using larger data sets than the data sets investigated in

Chapter 6 could be created, such models may still fail to maintain adequate estimation

accuracy after maintenance events in the future that change the system behaviour in

such a manner that has not been previously captured in the training data.

In general, global models have the advantage that only one model is required for use,

hence involve a relatively simple training and set up procedure. However, large global

models incorporating data from a broad operating space may become overly general,

and not capture specific behaviour for different input conditions. In general, greater

amounts of data may lead to a better average approximation, but using less data may

amount to better accuracy over smaller regions of the operating space.

Local modelling of complex non-linear processes through the division of the complete

operating space into smaller sections is a well known “divide and conquer” technique

to avoid the curse of dimensionality and lack of transparency for global models [255].

Different local models are created to model different regions of the process operating

space. However, difficulties related to the partitioning of the operating space, structure

determination, and local model identification are the main drawbacks of local modelling

approaches [96]. For time-varying systems such as the plasma etch system, Su et al.

[236] noted that the inclusion of data from operational spaces before and after process
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EP data EP and PIM data

Number of Wafers 18513 12133
Measured Wafers 793 529
PM Cycles 18 12
Measurement Frequency 4.3 % 4.4 %

Table 7.1: Description of data collected from Tool 1.

drift serves to improve the accuracy of virtual metrology (VM) models. Wise et al. [34]

compare the use of global and local models for FDC of a plasma etch process, finding

the local modelling approach more successful.

This chapter explores three local modelling schemes that strive to improve upon the

accuracy of the global models of Chapter 6. The development of local models involves

the partitioning of collected data into subsets of data points and the creation of multiple

VM models using these subsets.

7.1 Local modelling approach

7.1.1 Data set for local modelling

As described in Section 6.3, the etch process data available for VM testing is collected

from two plasma etch machines. There are substantially more metrology data available

in the data collected from Tool 1 than in the data collected from Tool 2. The data from

Tool 1 also contains more variation and is sampled more regularly than the data from

Tool 2. Because the division of the data into smaller sections for local modelling restricts

the number of samples available for model creation, it is decided to use data from Tool 1

only during the local model investigations to maximise the number of samples available.

A summary of the data from Tool 1 is presented in Table 7.1.

Four different combinations of the variables available are considered VM input vari-

ables for the local modelling scheme to provide a cross-section of information from the

different sensors available. Descriptions for each of the variable selections are given in

Section 6.4.2. Where possible, the input selections examined during the local model

analysis are:

1. EP data,

2. PIM5 data,

3. XZRP data, and
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4. EP-PIM0 data.

7.1.2 Modelling techniques for local modelling

Five different modelling techniques are chosen for local model investigations on the basis

of their performance during global modelling of the etch rate data set in Chapter 6. The

modelling techniques investigated are:

• Stepwise selection with least squares regression (LSR), i.e. stepwise regression, is

chosen as a modelling technique that incorporates variable selection into to the

modelling procedure.

• LARS modelling is included for comparison with the better-known stepwise re-

gression technique, and to verify if improved modelling performance over stepwise

regression is observed for local models, as was seen for the majority of global

models in Chapter 6.

• Partial least squares (PLS) regression is chosen as a latent-variable-based technique

that can handle large numbers of input variables and restricted numbers of training

samples without numerical difficulties by extracting explanatory variables from the

original input data. PLS performed well during global model investigations.

• Artificial neural networks (ANNs) are included as a non-linear modelling technique.

While neural networks performed well during global modelling tests, difficulties

during local modelling may arise due to the limited number of training points

available for each model. Stepwise selected input variables (based on linear model

performance according to the stepwise regression algorithm) are used as inputs to

the ANN models.

• Gaussian process regression (GPR) modelling is included as a non-parametric tech-

nique with both linear and non-linear capabilities. Gaussian process models typi-

cally require fewer training points than ANN models for accurate estimation and

so may be more suited to local modelling. Stepwise selected input variables are

used as inputs to the GPR models.

These five techniques are selected as a representative subset of the model types

examined and include techniques with both linear and non-linear modelling capabilities.

Details on each technique can be found in Chapter 3 and where applicable, any further

data processing carried out on the input variables before modelling in this chapter is

explained.
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Principal component regression (PCR) is not examined since the global PCR models

performed poorly during global modelling of similar data sets in Chapter 6. Least

squares regression (LSR) is not considered as a modelling technique because the training

data sets available for the local models may have insufficient samples to obtain reliable

models. Small training data sets causes the number of variables to become comparable

or greater than the number of training samples and such ill-conditioned input matrices

cause computational instabilities when LSR is employed to form a predictive model.

7.2 Regional PM cycle models

The first of the local modelling approaches is a method to partition the data set into

separate bins depending on their original temporal position within each PM cycle. A

different VM model is then constructed for each region within a PM cycle, and the

models are switched when estimating output variables for unseen wafer data, depending

on the PM position of the unseen data. VM models built on these data are termed

regional PM cycle models. The PM intervals are assumed to be regular, as is the case

with most semiconductor manufacturing processes. The regional PM cycle modelling

scheme is illustrated in Figure 7.1.
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Figure 7.1: Regional PM cycle modelling scheme with three models used to cover the
PM range. The diagram shows how wafers from similar sections of PM cycles are used
to form models and perform virtual metrology on wafers from the same range in future

PM cycles.

It is conjectured that the beginning sections, middle sections, and end sections of

individual PM cycles may be more similar to the corresponding sections in other PM

cycles than to the other sections of the same PM cycle. Lending weight to this hypothesis

is the fact that several of the measurements recorded from the etch chamber (that are

used as VM model input variables) exhibit repeatable patterns over the course of each
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PM cycle, and it is known that chambers undergo repetitive cleaning and conditioning

procedures as wafers are processed in each PM cycle. Figure 6.2 shows an EP variable

that exhibits repeated patterns throughout each PM cycle, and Figure 7.2 shows a

similar pattern recorded in a PIM variable. The purpose of the regional PM cycle

modelling scheme is to examine whether similarities between the plasma etch data at

different stages of PM cycles can be exploited to boost etch rate estimation accuracy.

It is thought that if similarities exist between similar stages in different PM cycles, the

regional PM cycle modelling scheme may lead to more accurate estimation of etch rate

in unseen data by switching VM models as wafers are processed in new PM cycles.

Figure 7.2: PIM variable (VL0) that shows a repeatable pattern over multiple PM
cycles. Such patterns suggest that similarities exist between the data from similar

regions in each PM cycle.

7.2.1 Modelling results

The etch rate estimation performance of the regional PM cycle models is tested using

wafer data that contains both EP and PIM data to allow performance comparisons

between models using data from different sources. The first 70% of the data are used for

training and validation of models as described in Section 6.4.1 (50% for training, 20%

for validation). The test data set (30%), used to judge model performance on unseen

data, occurs chronologically later than the training and validation data, offering data

from unseen PM cycles as a test of performance.

The training data are separated into sections according to their position within each

PM cycle as depicted in Figure 7.1. The validation data for each section are interleaved
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uniformly among the training data. The data in each section are mean centered and

normalised to unit variance, using statistics calculated using the training data points.

Data are normalised differently for each section depending on the means and standard

deviations of the variables in the training data for that particular section.

The number of models created per PM cycle is varied from one to ten to determine

an appropriate level of granularity and highlight the effect of the regional modelling

technique on estimation accuracy. Figures 7.3, 7.4, 7.5, 7.6, and 7.7 show the regional

PM cycle modelling results for etch process (EP) data (see Section 6.4.2) using step-

wise regression, LARS, PLS, ANNs, and GPR models respectively. The first point on

each figure, where one model is used used to model the full range of the PM cycles, is

equivalent to a chronological global modelling scheme where all training data are used

to form one VM model. To evaluate model performance, the mean absolute percentage

error (MAPE) and R2 values on the de-normalised etch rate estimates are examined.

(a) (b)

Figure 7.3: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique using EP data with varying numbers of regional

stepwise regression models per PM cycle.

The results in Figures 7.3 – 7.7 show that the use of regional PM cycle models

does not improve the estimation accuracy on the unseen test data, compared to the

global modelling results (1 model per PM cycle). Figures 7.8 and 7.9 demonstrate that

regional models using plasma impedance monitor (PIM) data as input variables behave

similarly to those using the EP data, with model estimation performance worsening as

the number of models used to represent the full PM cycle range is increased for both

PLS and GPR-based models.

Training data estimation performance however, shows improved performance with

increasing numbers of models in some cases, as demonstrated in Figures 7.5 and 7.6. The

increase in training data estimation accuracy is a result of the decrease in the number of
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(a) (b)

Figure 7.4: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique using EP data with varying numbers of regional

LARS models per PM cycle.

(a) (b)

Figure 7.5: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique using EP data with varying numbers of regional

PLS models per PM cycle.

training samples available per model when the data are further divided, as depicted in

Figure 7.10. With fewer samples available during model training, models fit the training

data effectively but demonstrate poor estimation capability on the test data.

7.2.2 Summary

This section has used a regional modelling scheme to divide PM cycles into chronological

sections and subsequently build VM models on each section separately in an attempt

to improve upon the estimation accuracy accuracy of global VM models. The results in
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(a) (b)

Figure 7.6: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique using EP data with varying numbers of regional

ANN models per PM cycle.

(a) (b)

Figure 7.7: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique using EP data with varying numbers of regional

GPR models per PM cycle.

Section 7.2.1 demonstrate that regional PM cycle models do not improve the estimation

accuracy of the VM models examined. The similarities that exist between corresponding

regions of different PM cycles are not sufficient to aid in etch rate estimation, suggesting

instead that inter-PM variations may be more influential than intra-PM variations. In

Section 7.3, a second method of partitioning the process data to exploit similarities

between different wafers to aid estimation accuracy is examined.
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(a) (b)

Figure 7.8: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique with varying numbers of regional PLS models per

PM cycle. PIM data are used as the source data for these PLS models.

(a) (b)

Figure 7.9: (a) Mean absolute percentage error (MAPE) and (b) R2 results for re-
gional PM cycle modelling technique with varying numbers of regional GPR models

per PM cycle. PIM data are used as the source data for the GPR models.

7.3 PM cycle clustering

The work of Section 7.2 examined the possibility of using similarities between corre-

sponding regions of different PM cycles to improve etch rate estimation accuracy over

that of global modelling techniques. However, the inaccurate results of Section 7.2.1

and the inaccurate chronological etch rate estimation after PM events demonstrated in

Chapter 6 suggest that significant differences exist between the different PM cycles in

the data set. The aim of this section is to investigate these differences and test whether

any similarities between different PM cycles can be found and harnessed to improve etch

rate estimation accuracy.
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Figure 7.10: Variation in number of data points available for model training, valida-
tion, and testing as the number of regional models per PM cycle is increased.

7.3.1 Data set clusters

The first step in this investigation is the identification of similar data points in the

etch data set. To allow comparisons of different sensor types, and to include as much

wafer information as possible during data analysis, data containing both EP and PIM

measurements for each wafer are used.

The EP variables are investigated first. Principal component analysis (PCA) is

carried out on the 28 variables of the EP data after mean centering and standard devi-

ation normalisation. PCA is used here as a data reduction technique, where the largest

sources of variance in the EP data are described by the first principal components. The

first three principal components, explaining 60.4% of the EP data variance, are shown

in Figure 7.11, where different PM cycles are represented by different coloured points.

The data set contains data from twelve different PM cycles where EP and PIM data

were recorded simultaneously. The analysis is considered unsupervised because the etch

depth data are not included.

Three distinct clusters exist in the EP data as shown in Figure 7.11, where, for ease

of visualisation, only every fifth wafer is shown. This work is not the first occasion where

clusters have been observed in semiconductor etch data. The clusters are similar in form

to the clusters seen in work by Zeng and Spanos [229], where clustering algorithms are

applied to an etch bias data set from two different machines. Similar patterns are seen
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Figure 7.11: First three principal components (PCs) of etch process (EP) data. Data
from each preventative maintenance (PM) cycle are coloured differently. Three separate

clusters are visible in the data set.

in a stack etch process by He and Wang [58, 201] during work on fault detection and

classification. Data clusters are also observed through an analysis of the data from Tool

2 used in Chapter 6.

The first three principal components of the PIM data which explain 64.2% of the

PIM data variance are shown in Figure 7.12(a) and also reveal a number of distinct

clusters, ruling out EP sensor errors as the source of the EP data clusters. The clusters

are found through a PCA decomposition and truncation of the PIM voltage, current,

and phase signals. Because the phase values recorded are relatively erratic signals that

are not well correlated together, they are not very well suited to compression via PCA.

To incorporate the phase measurements in the analysis in a more structured manner,

PCA is performed on the reactance (X) and resistance (R) values for each of the 52

harmonics, calculated using Equations (2.36) and (2.37). The principal components

arising from the X and R data (XR data) are shown in Figure 7.12(b); four distinctly

separated clusters are found in the data.

To include as much independently measured data as possible in the cluster formation,

the principal components from both the EP and the XR data are used to form Figure

7.13, resulting in more distinctly separated clusters. In Figure 7.13, the first principal

component of the EP data is plotted against the first two components of the XR data

to reveal four distinct clusters, where each cluster is made up of data from one or more

PM cycles.
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(a) (b)

Figure 7.12: (a) First three principal components (PCs) of plasma impedance mon-
itor (PIM) data and (b) first three principal components of plasma reactance (X) and
resistance (R) data. Each predictive maintenance (PM) cycle is coloured differently.

Four distinct clusters are visible in the data set.

The existence of the clusters in the data suggests that the etch process moves between

distinct operating modes over the course of the complete data set. The changes in cluster,

indicating changes of operating point, appear to be brought about by PM events. This

modal operation may explain the lack of fit achieved during global modelling of the full

data set, and the poor estimation results for the regional PM cycle models. The main

sources of variation in the EP data, which are assigned the largest loadings during PCA,

are the matching network variables, the chamber electrode temperatures, and the RF

power supplied (a function of the matching network performance). For the XR data,

the variance is relatively evenly spread among the harmonic data. The existence of

the clusters is thought to arise from the electrical characteristics of components that are

replaced during PM events and sensitivity to the precise positioning of other components

by engineers.

It is important to note that the number of clusters observed is less than the number

of PM cycles in the data set. This lends weight to the hypothesis the recorded data can

be divided into clusters of data with similar characteristics, and it is conjectured that as

the number of PM cycles of data in the data set tends towards infinity, a finite number of

data clusters will be observed. Should the complete principal component space be filled

when additional data is available such that individual clusters are difficult to isolate, the

data can still be divided into local modes of operation using a clustering algorithm.

The objective of the following sections is to investigate whether the use of multiple

specialised cluster models that concentrate on the operational space of each cluster

separately is better for estimation of etch rate than the use of models with global scope.
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Figure 7.13: First principal component (PC) of EP data plotted against first two PCs
of plasma reactance and resistance (XR) harmonic data. Each PM cycle is coloured

differently.

7.3.2 Data set preparation

The wafer data containing both PIM and EP data originate from 12 different PM cycles,

numbered 1–7 and 13–18. The missing PM cycles numbered 8-12 are are excluded from

this analysis as they contain data with no PIM data recorded (see Table 7.1) which

prevents the calculation of reactance and resistance values for the clustering identification

process.

The principal components of the wafer data are shown in Figure 7.13. The four

clusters are given cluster numbers for ease of reference:

1. Cluster 1: A cluster containing PM cycles 1,2, and 3. The data points in this

cluster are relatively close to each other.

2. Cluster 2: A cluster containing PM cycles 4,5, and 6. The data in Cluster 2 are

more spread out than the data in other clusters.

3. Cluster 3: A second tightly contained cluster containing PM cycles 13–18.

4. Cluster 4: A cluster that contains only the 7th PM cycle.

The clusters observed in the EP and XR data are echoed in the etch rate measure-

ments. Figure 7.14 shows the wafer etch rate with the cluster and PM divisions marked.

There are differences in the average etch rate between each cluster and these are further

highlighted by the box plot in Figure 7.15. An analysis of variance (ANOVA) of the
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etch rates in each cluster rejects the null hypothesis that the mean etch rates in each

cluster are equal at the α = 0.01 significance level.

Figure 7.14: Normalised etch rate with cluster boundaries and PM events marked.
Differences in the mean etch rate in each cluster are evident in the figure.

Figure 7.15: Box plot showing etch rate distributions in each cluster. The bottom
and top of the box mark the the upper and lower quartiles of the etch rate and the
band in the middle of each box marks the median etch rate for each cluster. The box
whiskers extend to +/− 2.7σ and outlying points beyond these limits are marked with

a ‘+’.

To test the performance of cluster-based modelling, data from one PM cycle is ex-

tracted from each cluster to act as test data during model evaluation. PM cycles centered
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in each cluster are chosen such that the test data set comprises data from PM cycles

3,6,17, and 7, representing clusters 1,2,3, and 4 respectively. Since Cluster 4 comprises

data from a single PM cycle, that is PM cycle 7, no VM model is created for the cluster.

Hence, the data in Cluster 4 provide an opportunity to explore VM strategies during

etching of wafers where previously defined cluster models are not available. Figures 7.16

and 7.17 show the wafer data with the training data shown in black and test data shown

in red.

Figure 7.16: First principal components (PCs) of EP data plotted against first two
PCs of plasma reactance and resistance harmonic data (XR data). Data from one
preventative maintenance (PM) cycle in each cluster is chosen as test data and coloured

in red.

For each modelling technique in turn, four different models are created; three cluster

models are created, one for each of the training data sets from Clusters 1,2, and 3, and

one global model is trained using the training data from all three clusters. Each cluster

model is then tested using the test data points from the relevant cluster. The global

model is tested on the test data from all of the clusters.

7.3.3 Results

The mean absolute percentage error (MAPE) on the de-normalised etch rate estimates

is used to compare model results during this investigation because each cluster uses

different mean and standard deviation values to normalise test data. The R2 value for
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Figure 7.17: First principal component (PC) of EP data plotted against first PC of
plasma reactance and resistance data (XR data). Again, the four separate clusters are
visible in the data set, where data from one preventative maintenance (PM) cycle in

each cluster is chosen as test data and coloured in red.

each model is also included to provide extra information on the quality of the estimations,

since, as outlined in Section 6.6, the MAPE value alone can be misleading in some cases.

As found with the global modelling results in Chapter 6, no modelling technique

or input variable combination stands out with exceptional performance when compared

to the others during cluster-based modelling. Tables 7.2, 7.3, 7.4, and 7.5 compare the

cluster and global model results for EP, PIM5, XRZP, and EP-PIM0 data respectively.

The modelling results shown are based on model performance on test data from all of the

different clusters. Cluster model performance is calculated by combining the estimates

from each cluster model when tested on test data from that same cluster, i.e. predictions

from cluster model 1 on test data from Cluster 1, predictions from cluster model 2 on

test data from Cluster 2 etc. The cluster with no training data, Cluster 4, is not included

in the results of Tables 7.2 – 7.5. The cluster models marginally outperform the global

models in 14/20 cases.

ANN models are found to produce relatively poor results throughout cluster model

testing. The poor estimation capabilities of the ANN models are attributed to the

relatively small training data sets used for cluster model training; approximately 40

samples are available per PM cycle such that training data for Clusters 1 and 2 have only

approximately 80 samples available for model training. Since a larger number of data

points are available during global model training than for cluster model training, global

ANN models generally outperform cluster ANN models regardless of input variable
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Global Model
Model Typ MAPE R2 MAPE R2
PLS 1.79 0.53 1.60 0.52

LARS 1.77 0.54 1.64 0.47

Stepwise 2.58 0.28 1.65 0.48
ANN Step 1.54 0.54 1.83 0.31 Model Typ MAPE R2 MAPE R2
GPR Step 1.75 0.36 1.73 0.45 PLS 1.96 0.52 1.70 0.52

LARS 1.85 0.52 1.59 0.52

Stepwise 41.13 0.36 1.77 0.43

Global Model ANN Step 1.65 0.49 1.86 0.45
Model Typ MAPE R2 MAPE R2 GPR Step 1.57 0.53 1.67 0.47
PLS 1.65 0.50 1.57 0.51
LARS 1.59 0.53 1.74 0.31
Stepwise 6.11 0.41 1.62 0.44
ANN Step 1.85 0.42 1.69 0.42
GPR Step 1.60 0.52 1.70 0.46

Model Typ MAPE R2 MAPE R2
PLS 1.61 0.47 1.58 0.46
LARS 1.60 0.47 1.59 0.48
Stepwise 133.78 0.34 1.65 0.43
ANN Step 1.68 0.50 2.43 0.43
GPR Step 1.69 0.49 1.66 0.46

Global Model Cluster Models

EP‐PIM0 data
Global Model Cluster Models

EP Data
Cluster Models

PIM5 Data
Cluster Models

XZRP data

Table 7.2: Comparison of global and cluster model performance on unseen data from
each cluster using etch process (EP) data. A correct mark indicates whether the global

or local model demonstrates a better MAPE.

Global Model
Model Typ MAPE R2 MAPE R2
PLS 1.79 0.53 1.60 0.52

LARS 1.77 0.54 1.64 0.47

Stepwise 2.58 0.28 1.65 0.48
ANN Step 1.54 0.54 1.83 0.31 Model Typ MAPE R2 MAPE R2
GPR Step 1.75 0.36 1.73 0.45 PLS 1.96 0.52 1.70 0.52

LARS 1.85 0.52 1.59 0.52

Stepwise 41.13 0.36 1.77 0.43

Global Model ANN Step 1.65 0.49 1.86 0.45
Model Typ MAPE R2 MAPE R2 GPR Step 1.57 0.53 1.67 0.47
PLS 1.65 0.50 1.57 0.51
LARS 1.59 0.53 1.74 0.31
Stepwise 6.11 0.41 1.62 0.44
ANN Step 1.85 0.42 1.69 0.42
GPR Step 1.60 0.52 1.70 0.46

Model Typ MAPE R2 MAPE R2
PLS 1.61 0.47 1.58 0.46
LARS 1.60 0.47 1.59 0.48
Stepwise 133.78 0.34 1.65 0.43
ANN Step 1.68 0.50 2.43 0.43
GPR Step 1.69 0.49 1.66 0.46

Global Model Cluster Models

EP‐PIM0 data
Global Model Cluster Models

EP Data
Cluster Models

PIM5 Data
Cluster Models

XZRP data
Table 7.3: Comparison of global and cluster model performance on unseen data from

each cluster using PIM5 data.

Global Model
Model Typ MAPE R2 MAPE R2
PLS 1.79 0.53 1.60 0.52

LARS 1.77 0.54 1.64 0.47

Stepwise 2.58 0.28 1.65 0.48
ANN Step 1.54 0.54 1.83 0.31 Model Typ MAPE R2 MAPE R2
GPR Step 1.75 0.36 1.73 0.45 PLS 1.96 0.52 1.70 0.52

LARS 1.85 0.52 1.59 0.52

Stepwise 41.13 0.36 1.77 0.43

Global Model ANN Step 1.65 0.49 1.86 0.45
Model Typ MAPE R2 MAPE R2 GPR Step 1.57 0.53 1.67 0.47
PLS 1.65 0.50 1.57 0.51
LARS 1.59 0.53 1.74 0.31
Stepwise 6.11 0.41 1.62 0.44
ANN Step 1.85 0.42 1.69 0.42
GPR Step 1.60 0.52 1.70 0.46

Model Typ MAPE R2 MAPE R2
PLS 1.61 0.47 1.58 0.46
LARS 1.60 0.47 1.59 0.48
Stepwise 133.78 0.34 1.65 0.43
ANN Step 1.68 0.50 2.43 0.43
GPR Step 1.69 0.49 1.66 0.46

Global Model Cluster Models

EP‐PIM0 data
Global Model Cluster Models

EP Data
Cluster Models

PIM5 Data
Cluster Models

XZRP data

Table 7.4: Comparison of global and cluster model performance on unseen data from
each cluster XRZP data.

selection. These results are in line with the general perception that ANNs are data-

hungry [91], typically requiring a relatively large number of samples to develop useful

models. Hence, the scarcity of training data in the cluster model exercise restricts the

use of ANN models for clusters where few data points are available. If the ANN model

results are excluded from the analysis, the cluster models outperform the global models

in 13/16 of the remaining combinations of input variables and modelling techniques.

To demonstrate the degree of localisation, the three cluster models and the global
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Global Model

Model Typ MAPE R2 MAPE R2
PLS 1.79 0.53 1.60 0.52

LARS 1.77 0.54 1.64 0.47

Stepwise 2.58 0.28 1.65 0.48
ANN Step 1.54 0.54 1.83 0.31 Model Typ MAPE R2 MAPE R2
GPR Step 1.75 0.36 1.73 0.45 PLS 1.96 0.52 1.70 0.52

LARS 1.85 0.52 1.59 0.52

Stepwise 41.13 0.36 1.77 0.43

Global Model ANN Step 1.65 0.49 1.86 0.45
Model Typ MAPE R2 MAPE R2 GPR Step 1.57 0.53 1.67 0.47
PLS 1.65 0.50 1.57 0.51
LARS 1.59 0.53 1.74 0.31
Stepwise 6.11 0.41 1.62 0.44
ANN Step 1.85 0.42 1.69 0.42
GPR Step 1.60 0.52 1.70 0.46

Model Typ MAPE R2 MAPE R2
PLS 1.61 0.47 1.58 0.46
LARS 1.60 0.47 1.59 0.48
Stepwise 133.78 0.34 1.65 0.43
ANN Step 1.68 0.50 2.43 0.43
GPR Step 1.69 0.49 1.66 0.46

EP Data
Cluster Models

PIM5 Data
Cluster Models

XZRP data
Global Model Cluster Models

EP‐PIM0 data
Global Model Cluster Models

Table 7.5: Comparison of global and cluster model performance on unseen data from
each cluster using EP-PIM0 data.

model are tested with the test data from every cluster. The modelling results for clus-

tered PLS and stepwise regression models using EP data are shown in Tables 7.6 and

7.7, respectively. For ease of comparison, the errors on each row of each table are colour

coded from red to green indicating the worst to best performing models. As expected,

cluster models perform best when tested on data from the same cluster upon which they

are trained. The model performances for other input selections demonstrate similar be-

haviour, as detailed in [256]. Similar to the effect described in Section 6.7.3, the reduced

range of etch rate in each cluster of data lead to relatively low R2 values for the cluster

models individually.

The model estimates from the PLS and stepwise regression models using EP data

are shown in Figures 7.18 and 7.19. While global model estimates follow the trend of the

actual etch rate over the complete data set, the cluster model estimates are inaccurate

outside of the input space upon which each cluster model is trained. Results similar

to those of Tables 7.6 and 7.7 are repeated across all of the input variable and model

combinations.

In tests completed for Cluster 4, for which no cluster model was built, none of the

models from the other clusters are capable of accurately estimating etch rate. However,

in general, the global models yield the most accurate estimates. Therefore, in a pro-

duction environment, in cases where etch tools operate in a previously unseen operating

space, optical measurements of etch depth can be taken with greater frequency than

before to allow model identification for the new cluster and to ensure that the process is

operating within specifications. If estimates must be made, the global models are most

likely to provide a reasonable estimation of the real etch rate.

Although Cluster 1 is a relatively closely packed cluster compared to Cluster 2,

modelling results for Cluster 1 are relatively poor. The lack of fit between the estimated

etch rate and real etch rate in Cluster 1 is seen in both global and local model predictions,
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Model Type MAPE R2 MAPE R2
PLS 1.96 0.52 1.70 0.52
LARS 1.85 0.52 1.59 0.52
Stepwise 41.13 0.36 1.77 0.43
ANN Step 1.65 0.49 1.86 0.45
GPR Step 1.57 0.53 1.67 0.47

MAPE R2 MAPE R2 MAPE R2 MAPE R2
Cluster 1 1.85 0.14 4.03 0.00 2.83 0.01 1.89 0.11
Cluster 2 4.06 0.01 1.53 0.12 3.11 0.03 1.98 0.17
Cluster 3 4.53 0.00 1.54 0.14 1.43 0.16 1.49 0.24
Cluster 4 2.31 0.06 1.82 0.12 1.97 0.03 1.84 0.01

MAPE R2 MAPE R2 MAPE R2 MAPE R2
Cluster 1 1.84 0.18 7.67 0.00 6.54 0.01 3.23 0.03
Cluster 2 9.79 0.09 1.68 0.03 6.58 0.01 2.82 0.11
Cluster 3 67.95 0.06 19.22 0.00 1.42 0.15 1.67 0.07
Cluster 4 5.02 0.09 2.52 0.01 8.93 0.02 3.25 0.05D

at
a 
So
ur
ce

Stepwise Cluster Models using EP data
Model Source

Cluster 1 Cluster 2 Cluster 3 Global

Global Model Cluster Models

D
at
a 
So
ur
ce

PLS Cluster Models using EP data
Model Source

Cluster 1 Cluster 2 Cluster 3 Global

Table 7.6: Detailed results from clustered PLS modelling of etch rate data using EP
data. Coloured cells are used to allow easy comparison between model results. Cluster
models perform best when tested with unseen data from the same cluster from which
they were trained, while global models provide reasonable estimates throughout the

data set.

Model Type MAPE R2 MAPE R2
PLS 1.96 0.52 1.70 0.52
LARS 1.85 0.52 1.59 0.52
Stepwise 41.13 0.36 1.77 0.43
ANN Step 1.65 0.49 1.86 0.45
GPR Step 1.57 0.53 1.67 0.47

MAPE R2 MAPE R2 MAPE R2 MAPE R2
Cluster 1 1.85 0.14 4.03 0.00 2.83 0.01 1.89 0.11
Cluster 2 4.06 0.01 1.53 0.12 3.11 0.03 1.98 0.17
Cluster 3 4.53 0.00 1.54 0.14 1.43 0.16 1.49 0.24
Cluster 4 2.31 0.06 1.82 0.12 1.97 0.03 1.84 0.01

MAPE R2 MAPE R2 MAPE R2 MAPE R2
Cluster 1 1.84 0.18 7.67 0.00 6.54 0.01 3.23 0.03
Cluster 2 9.79 0.09 1.68 0.03 6.58 0.01 2.82 0.11
Cluster 3 67.95 0.06 19.22 0.00 1.42 0.15 1.67 0.07
Cluster 4 5.02 0.09 2.52 0.01 8.93 0.02 3.25 0.05D

at
a 
So
ur
ce

Stepwise Cluster Models using EP data
Model Source

Cluster 1 Cluster 2 Cluster 3 Global

Global Model Cluster Models

D
at
a 
So
ur
ce

PLS Cluster Models using EP data
Model Source

Cluster 1 Cluster 2 Cluster 3 Global

Table 7.7: Detailed results from clustered stepwise regression modelling of etch rate
data using EP data.

with errors close to 2 % MAPE in many cases. The high MAPE values are due to erratic

changes in etch rate in the wafers contained within Cluster 1. The test wafer etch rate

variance in Cluster 1 (2.6 (nm/sec)2) is noticeably higher than for Clusters 2 and 3

(1.7 and 1.3 (nm/sec)2, respectively). The high frequency deviations in etch rate in the

cluster do not appear to be reflected in the VM model input variables.

Poor estimation quality for Cluster 2 is recorded for all of the input selection and

modelling techniques examined. Both Cluster 1 and Cluster 2 have fewer samples for

training than Cluster 3 and, additionally, the data points contained within Cluster 2 are

not closely packed in the principal component space as seen in Figures 7.16 and 7.17.

The larger distances between the wafers of Cluster 2 indicate a dissimilarity between

each wafer measured that presents a difficulty for the VM models.

Cluster 3 is more accurately estimated than the etch rate in the other clusters

throughout the study. The elevated accuracy seen for Cluster 3 is attributed to the

fact that more data points are available for Cluster 3 than any other cluster, and in the

principal component space of Figure 7.16, the data points of Cluster 3 are very closely

packed.
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Figure 7.18: Estimates from clustered PLS modelling of etch rate data using etch
process (EP) data. Cluster models are only useful for etch rate prediction on wafers

from the same cluster upon which they were trained.

7.3.4 Automatic determination of clusters

The identification of different clusters within the data set can be automated by means

of a clustering algorithm. For the purposes of demonstration, the well-documented k-

means clustering algorithm is applied to the principal component scores shown in Figure

7.16.

K-means clustering is an unsupervised method of clustering analysis that separates

a data set X ∈ Rn×p, of n observations and p variables, into k clusters where each ob-

servation in X is assigned to the cluster with the closest mean. Proximity is determined

using a pre-defined distance metric in p-dimensional space, such as the Euclidean or Ma-

halanobis distance. The mean of each cluster is called the cluster centroid. The k-means

algorithm operates to minimise the within-cluster sum of squares (WCSS), given by

WCSS =
k∑
i=1

∑
~xj∈Si

‖~xj − ~µi‖2 (7.1)

where X, made up of row vectors ~x1, ~x2, · · ·~xn, is split into k clusters, S = {S1, S2, · · ·Sk}
with centroids ~µ1, ~µ2, · · · ~µk. K-means is an iterative algorithm that adjusts centroid

locations over each iteration to minimise the WCSS. The algorithm proceeds as follows:
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Figure 7.19: Estimates from clustered stepwise regression modelling of etch rate data
using etch process (EP) data.

1. Choose k observations (rows) at random from X as centroid locations.

2. Assign each observation in X to the closest centroid to form preliminary clusters.

The analyst can choose the distance metric depending on the application.

3. Update the centroid locations to the mean of the newly formed clusters.

4. Steps 2 and 3 are repeated until the centroid assignments settle in fixed locations

and the algorithm has converged.

The final solution found by the k-means algorithm is dependent on the choice of

starting centroid locations, and as a result, it is common to repeat the analysis a number

of times before settling on a solution. K-means clustering is a heuristic algorithm and

there is no guarantee that the final solution is the global optimum. The main drawback

of k-means clustering is that the number of clusters must be supplied to the algorithm

before it is executed. However, if the clustering process is to be automated, statistical

coefficients such as the silhouette coefficient [257] can be used to estimate the optimum

number of clusters.

The application of the k-means algorithm to the etch rate training data set effectively

identifies the three clusters in the training data described in Section 7.3.1, using the three

principal component variables from the EP data and the XR harmonic data. The test

data points can be assigned to their correct clusters using the distance from each data
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point to the cluster centroids. The test data centroid distances are shown in Figure 7.20.

The correct cluster is identifiable from the first wafer of each new PM cycle, allowing

the application of the correct cluster model upon the start of each PM cycle. The data

points from Cluster 4 belong to none of the identified clusters, as is evident from Figure

7.20, where no cluster centroid is close to the Cluster 4 data points.

In a hypothetical on-line application of the clustering method, the centroid distances

can be used to determine when recently processed wafers belong to completely new

clusters. Wafer data that does not belong to an existing cluster requires the use of the

global model for estimation, and modelling of new cluster information when etch rate

metrology becomes available.

Figure 7.20: Euclidean distances from test points to cluster centroids. These distances
are calculated in 3-D space using principal components from the EP and X&R data.

Attempts to further improve estimation accuracy using weighted combinations of

the cluster and global model estimates, depending on each samples proximity to cluster

centroids, are documented in [256]. Based on the premise that data points within a

threshold distance of the center of each cluster are more suited to cluster models than

wafers on the outskirts of each cluster, a fuzzy weighting scheme is devised as depicted

in Figure 7.21. However, no significant increases in accuracy are achieved using this

scheme.
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Figure 7.21: Fuzzy weighting scheme for cluster modelling. Estimates for wafers
further from the cluster centroid than a threshold value are made up of a weighted sum

of the estimates from the cluster and global models.

7.3.5 Summary

The wafers containing the available PIM and EP data from Tool 1 can be segmented

into four separate clusters identifiable through PCA of the recorded process variables

from the chamber. Three of the clusters contain data from multiple PM cycles while the

fourth cluster only contains data from one PM cycle. Although the data set in this case

does not revisit a previously existing cluster when the wafers are ordered chronologically,

only 12 PM cycles are examined. With data spanning a greater number of PM cycles,

it is hypothesised that later PM cycles will exhibit behaviour similar to previously seen

clusters allowing previously defined cluster models to be used for etch rate estimation.

As the number of PM cycles observed increases, it is expected that a finite number of

clusters will approach a finite constant.

For the majority of input variable and modelling technique combinations, specialised

cluster models trained on each cluster are shown to produce more accurate etch rate

estimates than globally defined models for unseen test data points. However, overall,

the most accurate estimates are achieved using an ANN-based global model with EP

data. While reasons for inaccurate etch rate estimates for data from Clusters 1 and 2

are explained in Section 7.3.3, such data is representative of production data, and such

difficulties are to be expected in a production environment.
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Due to the lack of consistent results and the considerable additional implementation

complexities of the clustering technique for relatively small improvements in estimation

accuracy, global modelling is preferred to clustered modelling for the data set investi-

gated. However, the feasibility of the clustering technique is demonstrated, along with

the potential for improvements in VM accuracy should larger data sets that capture

data from more operational spaces be available.

7.4 Sliding window models

Continuously updated models that maintain etch rate estimation accuracy in the pres-

ence of fluctuating chamber characteristics are explored in this section. The models use

stepwise regression, LARS, PLS, ANN and GPR models, as described in Sections 3.3 –

3.8, to estimate etch rate.

7.4.1 Introduction to windowed models

Windowed models are VM models that are created using an initial set of training data

and used to estimate the outputs of further wafers as they are processed until new

metrology data becomes available. When new metrology becomes available, the oldest

information in the training data set is disregarded and the model is retrained or updated,

taking the new measurements into account. The training, estimation, and updating

procedures are repeated, creating a moving window of training data samples. The

number of data samples used as training data for the VM model is specified by the

window length.

Windowed models can be used to maintain model currency and relevance in time-

varying systems. The use of such schemes is not atypical among modelling practitioners

concerned with systems that exhibit time-varying properties. For example, Qin et al.

[258] propose a moving-window PLS scheme with a forgetting factor applied to a catalytic

reformer. Malinowski [259] use windowed data sets in conjunction with factor analysis

to determine concentrations of components in chemical processes. Dayal and McGregor

[260] describe a recursive PLS modelling system that incorporates a forgetting factor to

model a continuously-stirred tank reactor and an industrial flotation circuit. Li et al.

[261] use a recursively updating PCA model to monitor a thermal annealing process.

Windowed models have also been successfully applied to VM applications in semi-

conductor manufacturing. For example, Khan et al. [11] describe a VM and run-to-run

control strategy that uses a continuously updating windowed PLS model in a simulated
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semiconductor manufacturing process. While the windowed PLS system described in

[11] is applied to a simulated process that incorporates an exactly defined drift term,

the models described in this chapter are created and tested using actual production etch

data. Kang et al. [231] apply windowed models for VM of photolithography variables,

finding that model accuracy improves for longer window lengths (using up to 5 months

of data comprising over 1700 wafers).

Techniques exist for incorporating information from new data samples efficiently into

PLS [11, 59, 260] and PCA [196, 261] models. Such techniques are often referred to as

recursive or adaptive PCA and PLS methods. The training times of the plasma etch

VM models under investigation in this chapter are of the order of seconds and, as a

result, models can be completely retrained using the new window of training samples

at every iteration without the need for recursive algorithms. In a production system, if

window lengths become so large so as to become restrictive in terms of training times,

recursive modelling techniques can be employed to allow faster model refreshing.

In Section 7.4.2, a weighting factor is introduced to produce a novel weighted PLS

algorithm, where the sample weights are assigned according to the maintenance history

of the plasma chamber. The weighted PLS algorithm and the determination of the

sample weights is described in Section 7.4.2. A description of the models investigated

in this chapter is presented in Section 7.4.3 and the windowed modelling results are

presented in Section 7.4.4.

7.4.2 Weighted PLS algorithm

Weighted PLS

It is shown in Section 3.2 that a vector of weighted least squares model coefficients can

be calculated as

β̂W = (XTWX)−1XTWy, (7.2)

where β̂W ∈ Rp×1 are the weighted least squares regression coefficients, X ∈ Rn×p is

a matrix of variable observations, with n rows corresponding to samples and p columns

corresponding to input variables, W ∈ Rn×n is a diagonal matrix of weights applied to

each sample in X, and y ∈ Rn×1 is a vector of system outputs.

A combination of PLS and weighted least squares can be implemented. For systems

with a single output variable such as the plasma etch system, PLS can be visualised as

a regression procedure where the PLS components T ∈ Rn×l (l represents the number
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of components kept in the model) generated from the input matrix X are used as input

variables to a LSR model to estimate the single system output variable contained in

Y ∈ Rn×1. In the case of etch rate or etch depth estimation, Y contains only one

variable and is not decomposed into Y-loading and Y-component matrices as described

in Section 3.6. Y becomes a vector y. Hence, the inner-relation for the PLS algorithm

(Equation (3.29)) can be described as

y = Tβ̄, (7.3)

where β̄ is found using the LSR algorithm. A weighted-PLS system can be developed

by introducing weights to this LSR problem. Each row of T can be assigned a weight

specified in W, and the model parameters β̄ can be determined using weighted least

squares regression. Hence, β̄ is given by

β̄ = (TTWT)−1TTWy, (7.4)

where W is a diagonal matrix of weights relevant to each sample contained in T. The

weights can be determined through knowledge of the system being modelled or knowledge

of the conditions under which samples were collected.

Calculation of regression weights

The sample weights used in the weighted-PLS models in this chapter are determined

depending on the relevance of each training sample to the data point for which VM is

required. This approach is similar to work carried out by Dayal and McGregor [260]

where continuously updated PLS models were used to model physical systems. In their

work, Dayal and McGregor [260] developed a method to update the PLS model and

incorporate a “variable forgetting factor” that discards old data, deemed irrelevant,

from the training window. The advantages of using recursive PLS over recursive LSR

in the presence of correlated input variables and short data windows is also highlighted

in [260]. The idea of weighting individual samples to improve modelling performance is

also seen in work by Xu et al. [262] who use particle swarm optimisation (PSO) in a

black-box manner to determine the best sample weights to optimise model performance.

In the weighted PLS VM models used in this chapter, the sample weights are varied

in accordance with the tool maintenance history to satisfy two assumptions. Firstly,

due to process drift, it is assumed that more recent samples closer to the front of the

window are more relevant for estimation of current samples (the front of the window is
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defined as the most recent sample added to the window). Secondly, it is assumed that

samples contained within the same PM cycle as the current sample are more relevant for

estimation than samples from previous PM cycles and that data from older PM cycles

become less and less relevant as more wafers are processed. Some weight is added to

this assumption by the results of Section 6.6.1 where PM events cause inaccuracies in

previously defined models and Section 7.3.3 where cluster models estimate etch rate

better using models trained using neighbouring, more recent PM cycles (i.e. in the same

cluster) than older PM cycles.

A number of steps are taken to determine weights that satisfy these assumptions.

Initially, samples are assigned linearly increasing weights across the window, with the

sample at the back of the window given a weight of 0 and the sample at the front

of the window given a weight of 1. Next, the samples weights are adjusted according

to the number of PM cycles spanned by the window, as shown in Figure 7.22. The

samples contained in the most recent PM cycle are assigned the largest weights, and

older PM cycles are assigned progressively smaller weights. For example, in Figure 7.22,

the window spans three PM cycles; 2 is added to the samples in the most recent PM

cycle, 1 to the second most recent, and 0 to the oldest PM cycle. The weights are then

exponentially transformed to accentuate the effect of the weighting scheme, such that

w′i = ewi , where wi is the weight of the ith sample in the window and w′i is that weight

after the transformation. The exponential transformation of the weights has the effect

of increasing the overall range of the weights, and hence the relative effects of each one,

leading to the weighting profile shown in 7.23.

7.4.3 Data choice for windowed models

The modelling techniques listed in Section 7.1.2 are investigated as candidate modelling

techniques for the windowed modelling scheme, thus including linear techniques (step-

wise regression and LARS), a component-based technique (PLS), a non-linear technique

(ANNs), and a non-parametric technique (GPR) in the analysis. Two types of models

are examined in this section:

Up to this point, time-invariant models have been discussed for VM of plasma etch,

that is models that are trained once using a set of training data and are used for VM

of all future data points. The training algorithm is applied only once at initialisation

using the training data set. These models do not update over time and, as described in

Chapter 6, are most suitable for systems that do not vary in time or radically change

behaviour, and hence, are not useful for long term use in some plasma etch systems

[61, 224].
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Figure 7.22: Weighting profile for window length of 90 samples spanning three PM
cycles. The most recent samples, corresponding to the front of the window, are on the

right of the figure.

Figure 7.23: Weighting profile for window length of 90 samples after exponential
transformation.

Windowed models are models that are retrained every time new metrology informa-

tion becomes available, incorporating the newest information and discarding the oldest

information in the training data set.
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Because the windowed models depend on the order of the wafers in the data set,

contiguous data sets are preferable to those with missing data for testing the algorithms.

Hence, the data from Tool 1 containing EP data only is used for windowed model analysis

because it is the largest data set comprising over 18000 wafers and the data are almost

fully contiguous; there is only one chronological gap of approximately 1 month in the

data set. The data set is kept in chronological order throughout the investigation,

providing a realistic representation of the type of data collected from etch tools during

production. The etch rate variations over the complete data set are shown in Figure

7.24. The modelling results are compared on the basis of MAPE and R2.

Figure 7.24: Optically measured etch rate values for wafers from Tool 1. This data
set contains 789 measured wafers and spans 18513 wafers and 18 different PM cycles.
One substantial chronological gap in the data exists as labelled, where data collection
was disrupted for some time. Only etch process (EP) data is available for all of the

wafers.

7.4.4 Results

The windowed VM modelling schemes are applied to the etch data set using window

lengths ranging from 30 to 300 samples. Wafers after wafer 300 are used as test data

points for all model types investigated, with an appropriate portion of the first 300 wafers

being used to initialise the first model in each test. Hence, for each window length in-

vestigated, 493 different models are trained for each modelling technique, corresponding

to one model for each test data point.
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Firstly, in Figure 7.25 the MAPEs for windowed PLS models are compared with the

MAPEs for time-invariant PLS models for a number of window lengths for comparison

purposes. In the case of time-invariant model results presented, the specified window

length denotes the number of wafers used to initially create the model, which then

remains constant and is used to estimate the etch rate for all of the test data points.

MAPEs larger than 3.7% are observed for the time-invariant models for all of the window

lengths investigated, demonstrating that the these models fail when estimating unseen

etch rate variations. R2 values of below 0.5 are also recorded for the time-invariant

models [256]. In a similar fashion, large MAPEs and unreasonable estimates are observed

for time-invariant models using the other modelling techniques listed in Section 7.1.2 and

hence, such models are not considered for the remainder of this discussion.

The windowed modelling MAPE results for all of the modelling techniques are shown

in Figure 7.26. The etch rate estimation accuracy of the PLS and ANN models increases

with increasing window lengths. For the stepwise, LARS, and GPR models, window

lengths of 60 – 80 samples appear to generate the most accurate estimates.

Figure 7.25: Mean absolute percentage error (MAPE) for global and windowed PLS
models. The global models do not produce accurate results over the test data points.

Figure 7.27 examines the performance of the windowed PLS models with and without

the weighting scheme described in Section 7.4.2. Increased accuracy over non-weighted

windowed PLS models is achieved using the sample weighting scheme for the majority of

window lengths. The increase in accuracy is expected because the maintenance history

of the chamber is taken into account during the model creation for each window of

training data.
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Figure 7.26: Mean absolute percentage error (MAPE) for windowed models using
different modelling methods. While generally MAPE decreases with increasing window
length, an optimal window length of 70 samples appears to generate the best results

for three of the modelling techniques.

It is found that further improvements in estimation accuracy can be accomplished

with the inclusion of the most recently measured value for etch rate as an input variable

in each windowed model. The improvement in estimation accuracy arises because there is

an element of autocorrelation in the etch rate measurements. Work comparing windowed

PLS models using such autoregressive inputs to windowed models without autoregressive

inputs is further reported in [263], and the results for the windowed modelling scheme

using the autoregressive input are shown in Figure 7.28. The use of two autoregressive

inputs (the two most recent etch rate measurements) is found not to appreciably increase

the estimation accuracy over the results shown in Figure 7.28.

The GPR and ANN windowed models use stepwise selection (see Section 3.3) to

reduce the number of input variables before model training. GPR models perform

consistently better than the other modelling techniques, with the best results reported

for window lengths of 70 wafers as shown in Figures 7.26 and 7.28. For small window

lengths, windowed ANN models perform poorly due to a lack of training data. Increasing

the window length improves ANN estimation performance to a level comparable with the

other modelling techniques investigated, but the GPR models perform more accurately

for all window lengths. The R2 values for the windowed models using the autoregressive

inputs are shown in Figure 7.29.

The R2 and MAPE values of the windowed models are substantially better than
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Figure 7.27: MAPE for windowed PLS models with and without the maintenance-
dependent sample weighting scheme. The etch rate estimation accuracy increases when
the weighting scheme is used because the maintenance history of the chamber is ac-
counted for during modelling, weighting each sample according to their relevance to the

wafer for which VM is required.

those of the time-invariant models and the global models of Chapter 6. Considering

that much smaller amounts of training data are used during windowed model training,

and that the models can perform accurately over PM events in the test set, windowed

models are preferred.

The best results for the windowed models without the autoregressive term are

recorded for a window length of 70 wafers using GPR models with a stepwise selec-

tion of the input variables. This model estimates the actual etch rate for the 493 test

wafers with a MAPE of 1.18 % and R2 of 0.73. Incorporation of the autoregressive term

in the GPR models results in a best MAPE of 1.14 % with an R2 of 0.75, using a window

length of 70 wafers. A weighted-windowed PLS model with autoregression and a window

length of 200 achieves a MAPE of 1.2 % with R2 of 0.72. Figure 7.30 shows the etch

rate estimates for the best PLS-based models and, for comparison, a time-invariant PLS

model created using an initial training set of 200 wafers. The time-invariant PLS model

fails to produce useful estimations of etch rate due to shifts in the etch performance as

wafers are processed and PM events occur.

The high R2 statistics exhibited by the windowed models are not directly comparable

to the R2 statistics reported for the chronological global modelling results of Chapter

6. In the windowed model case, the error statistics for each model are calculated on

estimates of etch rate that have a greater range than in the global model case. While the
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Figure 7.28: MAPE for windowed models using an autoregressive input. Inclusion
of the most recently measured value of etch rate as an input variable to the windowed

models has the effect of increasing the VM accuracy.

Figure 7.29: R2 values for windowed models using autoregressive inputs and window
lengths 30-300. As with the MAPE values, model R2 values increase with the introduc-
tion of the weighting scheme and autoregressive term. The R2 values for time-invariant

models are generally below 0.5 (not shown).

model estimates follow the overall trend of the etch rate variations allowing a relatively

high R2 to be achieved, the models still do not accurately model the high frequency

fluctuations in the etch rate data, similar to the results described for the global modelling

results described in Section 6.7.
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Figure 7.30: Section of etch rate predictions from best PLS weighted windowed mod-
els. The PLS models use the wafer weighting scheme and a window length of 200 wafers,
achieving a MAPE 1.2 % and R2 0.72. Although the diagram shows how large scale
etch rate variations are followed successfully by the estimates, smaller, high-frequency
fluctuations in the data are still relatively poorly estimated. The time-invariant PLS

model fails to produce accurate VM estimates after a shift in etch rate.

While the estimates from the best windowed GPR and stepwise models are of similar

accuracy, one advantage to the use of GPR models is that each etch rate estimate is

accompanied by a confidence interval. Figure 7.31 shows the 95 % confidence intervals

for each etch rate estimate from the windowed GPR models using a window length of 70

samples. The confidence intervals capture a range around the etch rate estimates which

is sufficiently large to encapsulate the measured etch rate value for the majority of wafers.

Graphical representations of the residuals produced by the windowed GPR models are

shown in Figure 7.32. The model residuals are found to obey a normal distribution.

7.4.5 Computational concerns

The computation times for each VM estimate of etch rate must be short enough to be

computed in a timely manner for real-time implementation in a semiconductor fabrica-

tion plant. While this may not have been a concern for global models because estimates

can be computed in less than a second, for windowed models, the time for calculation

of the VM estimate may include the time for re-computation of VM model itself. Table

7.8 shows the model training and estimation time for one sample (in seconds) for each

modelling technique using a computer with a 2.6 GHz dual-core processor and 2 GB

240



Local Modelling

Figure 7.31: Windowed GPR model predictions with 95 % (2×σ)confidence intervals.
One of the benefits of using GPR models is that confidence intervals on predictions can

be easily evaluated.

Window length Stepwise LARS PLS ANN GPR

70 0.0083 0.0089 0.0185 0.9952 14.4875

150 0.0144 0.0098 0.0250 1.2321 38.9297

250 0.0239 0.0110 0.0315 1.4915 118.23

Table 7.8: Comparison of times required for training and estimation of one window
of samples for different model types (in seconds).

RAM. Training times for the stepwise regression, LARS, and PLS regression models are

faster than those of ANN and GPR models because the latter two techniques require the

use of optimisation techniques and multiple random initialisations during model training

procedures.

While early stopping is employed using a validation data set during optimisation of

the weights for ANN models, gradient descent is used to optimise the GPR hyperparam-

eters without a validation data set, relying instead on the log-likelihood equation to limit

the complexity of the model. The etch processing time for each wafer is approximately 5

minutes, and there is a metrology delay of several hours for etch rate measurements.

Hence, according to Table 7.8, any of the three modelling techniques investigated are

suitable for real-time implementation of a windowed VM system, in that VM estimates

can be made in the seconds between changing wafers, and model training times are

negligible compared to the existing metrology delay.
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Figure 7.32: Graphical analysis of model errors from best GPR model showing (a)
error magnitudes, (b) normal probability plot, (c) histogram of error values, and (d)

scatter plot of predicted and actual values.

7.4.6 Summary

Windowed models take new information into account while discarding past data and,

as a result, they are more successful than global models at maintaining model currency

and estimation accuracy even with changes in chamber operation that arise due to

process drift and preventative maintenance events. Windowed models outperform the

time-invariant models for all window lengths examined.

The accuracy of windowed PLS models is improved through the application of a

novel sample weighting scheme to the PLS algorithm, where the sample weights are

determined in accordance with the maintenance history of the plasma etch chamber.

The incorporation of this information leads to an reduction in estimation error for almost

all window lengths investigated, as illustrated by Figure 7.27, along with an increase in

R2 value.

Further increases in VM accuracy are achieved for all of the modelling techniques

through the addition of previous etch rate measurements as input variables to the VM

models.

Windowed GPR models were found to perform best out of all of the windowed mod-

els, using smaller window lengths to produce more accurate etch rate estimates. Addition
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of the autoregressive term to the GPR models further improves performance. The most

accurate windowed GPR model estimates the etch rate of 493 unseen test wafers with

an R2 of 0.75 and MAPE 1.14 %. The 493 test wafers are dispersed among 11, 692

processed wafers, highlighting the robustness of the windowed models to long-term pro-

cess variations. Although GPR models incur substantial extra computational load to

similarly-performing stepwise regression models, typically, the 95% confidence limits ac-

companying the GPR-model estimated encapsulate the range of etch rate values where

the real etch rate lies. Because both GPR and stepwise models can be calculated within

the time required for real-time operation, GPR models are preferred due to the added

advantage of these confidence intervals.

7.5 Local modelling conclusions

This chapter has investigated a number of local modelling techniques to estimate varia-

tions in plasma etch rate more accurately than the global models described in Chapter

6. Particular difficulties attach to the utilisation of global VM models across PM bound-

aries, and a variety of local modelling approaches are explored to tackle this problem.

A regional modelling scheme, described in Section 7.2, is investigated that divides

PM cycles into chronologically based regions, and subsequently builds separate local

models on each region. The regional modelling scheme fails to improve upon the accuracy

of the global model estimates suggesting that there are little or no exploitable similarities

between wafer data from similar regions of each PM cycle. The regional modelling

scheme is further hindered by a shortage of data with which to train each model as the

number of models per PM cycle is increased. However, the results do not suggest that

more accurate results will be produced using the regional modelling technique on larger

data sets.

An analysis of the EP and PIM measurements reveals that the wafer data exhibit

modal behaviour, moving between distinct operational spaces. Four clusters of similar

data are found to exist in the data set. Each cluster contains wafer data from a whole

number of PM cycles. A clustered modelling technique that creates local VM models

for each cluster in the data is investigated, where the local VM models are used as ap-

propriate when performing VM for unseen data, depending on which cluster the unseen

data belong to. The clusters are identifiable using unsupervised clustering algorithms

such as k-means clustering.

Although the clustered models are found to improve modestly upon the accuracy of

the global models for the majority of input variable and model combinations investigated
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in this chapter, the improvements observed are relatively small and sensitive to the

choice of training and test data. On the basis of the results, global models are preferable

to cluster models due to more reliable estimates over the full data set and simpler

implementation. A larger set of historical data is required to fully explore the capabilities

of the clustering scheme, but the feasibility of the technique has been demonstrated here.

The third local modelling scheme investigated in this chapter is a windowed mod-

elling scheme. Windowed models outperform unchanging time-invariant models for all

window lengths examined. Windowed models, each of which are based on a subset of

the full data set, avoid becoming overly general and adapt over time with changes in

the chamber characteristics and the arrival of etch rate metrology. Incorporation of

chamber maintenance information into the determination of weights for a weighted PLS

algorithm improves the accuracy of the etch rate estimates. The error performance of

the best windowed models is similar to the performance of the global models trained

on interleaved data sets examined Chapter 6. Windowed models are implementable in

industrial settings.

Although the best windowed models follow the overall trend of etch rate variations,

they struggle to accurately model high frequency fluctuations in the data. These high

frequency fluctuations do not appear to be reflected in the VM model input variables, and

may arise from other related, but unmeasured, manufacturing processes or unmeasured

disturbances in the incoming material.

With regard to the modelling techniques used, ANN models are typically outper-

formed by PLS and GPR models for the local modelling schemes explored as a result

of the limited data sets available for model training. LARS models outperform the

better-known stepwise regression models for the regional and clustered schemes, but

underperform during windowed model tests. GPR models are found to work well with

small data sets and produce an accompanying variance value for each etch rate estimate.

In conclusion, the most accurate estimates for the plasma etch process under study

can be achieved through the use of a windowed modelling scheme. The windowed mod-

elling scheme can follow variations in etch rate over multiple PM events, and far out-

performs the performance of time-invariant and global models in terms of estimation

accuracy. Windowed models using GPR produce the most accurate estimates and al-

low simple calculations of confidence intervals on the etch rate estimates that typically

encapsulate the unmodelled variations in etch rate for the data set investigated.

The results of Chapters 6 and 7 have appeared in the Advanced Semiconductor

Manufacturing Conference (ASMC) 2009 [264], the IEEE International Conference on
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Industrial Technology (ICIT) 2010 [263], the Irish Signals and Systems Conference 2010

[254], and have also been submitted for publication in the IEEE Transactions in Semi-

conductor Manufacturing.
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Chapter 8

Virtual metrology and control of

plasma electron density

This chapter details the development of a real-time virtual metrology (VM) and model

predictive control (MPC) scheme for control of plasma electron density in an industrial

plasma etch chamber.

A literature review of related research is presented in Section 8.1. Motivation for

the control scheme developed in this chapter is provided in Section 8.2. Following this

discussion, a description of the experimental apparatus is provided in Section 8.3, and

finally, the implementation details and results from the control algorithms investigated

are presented in Sections 8.4 – 8.8.

8.1 Control in semiconductor manufacturing

Chapters 6 and 7 of this thesis are primarily concerned with the estimation of wafer

state variables, such as etch rate, using process data available during and after each etch

process run. Estimation of such variables could be used in either a real-time feed-back

loop or in a wafer-to-wafer feed-back control loop to achieve reliable process performance

by manipulating etch chamber inputs [231]. As discussed in Chapter 1, a number of

different feed-back loops can be implemented using information from plasma processing

tools, downstream metrology variables, and estimates from VM models. Three different

feed-back loops, operating on different timescales and using different information, are

depicted in Figure 8.1. The research in this chapter is focussed on the inner feed-

back loop that concerns the real-time regulation of plasma variables, in the case of this
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chapter, electron temperature. A brief overview of previously completed research for

each of the feed-back control loops is now presented.

Figure 8.1: Etch tool control possibilities with information flow. Three different
feed-back loops can be investigated for control.

8.1.1 Run-to-run control

The outer loop in Figure 8.1 describes control schemes in which the etch process recipe is

adjusted in response to real metrology data collected downstream from the etch process

or VM from each wafer processed. Wafer-by-wafer or lot-to-lot control in this manner

is known as run-to-run control and is addressed by a number of researchers for different

semiconductor manufacturing processes.

For example, Wang and Mahajan [265] demonstrate run-to-run control of a CVD

process using an ANN model-based feed-back controller, using an EWMA technique to

filter out process noise and detect drifts. Edgar et al. [266] focus on the use of state-

space models with scheduled observers for run-to-run control of CMP and lithography

overlay processes, finding that state-space formulations achieve better set point tracking

than EWMA controllers.
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Research by Card et al. [227, 267] uses ANNs to achieve run-to-run control and to

develop a control unit capable of accurately detecting the need for part replacements,

cleaning operations, and changes to process settings for etch processes. Rietman and

Patel [268] use an adaptive ANN-based controller to regulate the over-etch time for

wafers processed and succeed in reducing etch rate standard deviation by up to 40%

as compared to a human operator. Similarly, Limanond et al. [269] use an optimisa-

tion algorithm with goal attainment programming to determine the optimal etch time

for wafers so that etch depth variation can be reduced in simulation studies based on

production data. Ruegsegger et al. [7] demonstrate a run-to-run controller, using feed-

forward data from previous manufacturing processes, that reduces etch process variance

by adjusting RIE process recipes to compensate for variations in lithography critical

dimensions. Khan et al. [11] detail a fab-wide VM and run-to-run control scheme

with simulated results showing superior control when VM is employed in run-to-run

controllers rather than relying on infrequent and delayed real metrology.

Kang et al. [230, 231] describe VM schemes that estimate etch process results

for each wafer processed using process data. Five input selection algorithms and four

regression algorithms were examined as candidate techniques for VM modelling. An

EWMA-based run-to-run controller is shown to improve the overall productivity of a

simulated photolithography process.

Run-to-run control is not considered further in this thesis. For a complete exam-

ination of run-to-run techniques used in semiconductor manufacturing, the reader is

directed to the review works by Edgar et al. [6], Qin et al. [13], Bacelli [270], and

Ringwood et al. [8].

8.1.2 Etch process variable control

The center feed-back loop in Figure 8.1 depicts the control of etch variables such as

etch depth, etch rate, uniformity, end-point etc. Control of such variables can be im-

plemented in a real-time or run-to-run fashion depending on the availability of suitable

measurements and actuators.

Some of the earliest work in real-time control of plasma etch variables was completed

by Butler et al. [139] and McLaughlin et al. [271], concentrating on the analysis and

design of a multi-variable control system for a plasma reactor. Relative gain analysis

and the singular value decomposition (SVD) are used to select the manipulated and

performance variables, that is to understand the relationship between the manipulated

variables (pressure, power, gas flow rates), the process variables (DC self-bias, species
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concentrations), and the etch variables (yield, uniformity, anisotropy), and then choose

appropriate etch variables that can be controlled in real time and provide a measure of

the process quality.

In [135], a Kalman filter is implemented to obtain real-time estimates of etch rate and

etch depth from dual-wavelength reflectometry data for real-time proportional-integral

(PI) control of etch rate using RF power as the manipulated variable. Accurate end

point estimation is also achieved. In [272], real-time control of etch rate is demonstrated

using a proportional-integral-derivative (PID) controller and model-based feed-forward

action for large changes in etch rate set point. Laser reflectance interferometry (LRI) is

employed to measure the etch rate in real time for control purposes and again, RF power

is the manipulated variable. Stokes and May [273, 274] describe the use of an indirect

adaptive control strategy for control of etch rate, implemented using two neural network

models. Data for the system model are gathered using a 23 factorial experiment, varying

chamber pressure, RF power, and BCl3. The authors argue that the indirect adaptive

control scheme outperforms more conventional linear-quadratic-Gaussian (LQG) meth-

ods for controller design. Laser interferometry (LI), residual gas analysis (RGA), and

optical emission spectroscopy (OES) data provide process feed-back while RF power,

gas flow, and pressure are manipulated to control etch rate and wafer bias voltage on a

simulated system. In [275], Rosen et al. develop real-time feed-back controllers for etch

processes based on in-situ spectroscopic ellipsometry measurements of wafer thickness.

A combination empirical and first-principals, physics-based, state-space model for the

etching dynamics is developed to design the controller. Armaou et al. [276] examined

the use of three independent PI controllers that use measurements of the etch rate at

three locations to manipulate the inlet concentration of etchant gases at spatially dis-

tributed locations in a simulated etch process to improve etching uniformity. Parkinson

et al. [277] demonstrate the use of a multi-input-multi-output (MIMO) control system

for controlling critical dimensions (CDs) using scatterometry-based integrated metrol-

ogy that provides accurate CD measurements for each wafer. Substantial improvements

in CD variance are observed for simulation models based on production data.

The biggest drawback for many of the etch process control schemes detailed above is

the requirement for bulky and non-portable measurement tools, such as interferometers

and ellipsometers, or expensive integrated metrology tools, that are capable of measuring

etch rate variables in real time. More modern manufacturing tools are focussing on the

integration of metrology solutions for real-time measurement of process variables [12, 13],

which will further enable the widespread implementation of real-time and run-to-run etch

variable control for new processes.
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8.1.3 Plasma variable control

The inner control loop in Figure 8.1 concerns the real-time control of fundamental plasma

variables such as electron density, electron temperature, ion densities, ion fluxes, etc.

These plasma variables are fundamentally related to etch variables such as etch rate and

etch uniformity. Hence, regulation of the plasma variables in real time can result in a

more stable etch performance.

A number of different approaches to plasma variable control are examined by differ-

ent authors in the literature. Work by Rashap et al. [278, 279] focusses on the real-time

control of atomic fluorine density [F] and the wafer bias voltage (Vbias) in order to reg-

ulate etch rate in the presence of a number of disturbances to a RIE process. Chamber

pressure and power are the manipulated variables, [F] is determined using actinometry

and the real-time etch rate is determined using LRI, but this measurement is not in-

cluded in the feed-back control loop. Although control of [F] and Vbias served to reduce

the impact of disturbances compared to open-loop experiments, other uncontrolled fac-

tors tended to effect the etch rate apart from [F] and Vbias. Patterson and Khargonekar

[280] use the real-time control of [F] and Vbias to demonstrate a reduction of the loading

effect (see Section 2.3.4) in the same RIE process, demonstrating an 80% improvement

over open-loop methods. Hankinson et al. [281] further expand the work by Rashap et

al. [278, 279] by integrating real-time control of [F] and Vbias into a run-to-run control

framework using a non-linear controller and Hammerstein model structure. Hanish et al.

[205] examine the use of actinometry for real-time control of atomic chlorine [Cl], which

is more difficult than the measurement of [F] due to the peculiarities of actinometry for

chlorine plasmas. An extended Kalman filter is employed to estimate [Cl] in real time

for closed-loop PID control.

Park et al. [282] focus on the control of the ion energy bombarding the wafer sur-

face during etch processes by manipulating a variable resistor placed in parallel with

the blocking capacitor on the RF power line to the wafer electrode. The variable resis-

tor alters the bias voltage Vbias of the wafer. The etch rate is measured both off-line

using ellipsometry measurements and on-line using a spectral reflectometry system. A

controller is designed to regulate Vbias and the plasma power to constant set points by

manipulating the variable resistor and the RF power generator. The authors demon-

strate enhancements in selectivity and improvements in cleaning process effectiveness.

Milosavljevic et al. [283] demonstrate real-time, model-based control of ion flux and

species densities by manipulating power and oxygen flow rate in a dielectric plasma

etch chamber. Ion flux is measured using a specially adapted chamber electrode with a

built-in ion flux probe, and species densities are measured using actinometry methods
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and a mass spectrometer. The authors demonstrate superior control results using a

model-based controller over two single-loop PID controllers.

Lin et al. [284] reduce etch rate variations in an ICP etcher by controlling ion current

and RF voltage on the target electrode. The manipulated variables are the power from

two RF generators that adjust ion density and ion energy, respectively. RF voltage is

measured using an impedance meter. The RF peak voltage is chosen as a controlled

variable because it is correlated with the sheath voltage and, hence, also the ion energy

on the wafer surface. The ion current is controlled because it is related to the ion density.

Ion current is estimated, in a form of real-time VM, by dividing the measured RF power

by the fundamental RF bias voltage (the “power/voltage” method [210]). The control

scheme reduces etch rate variation due to transient wall conditions by a factor of two as

compared to open-loop operation.

Later work by Lin et al. [285] uses a fuzzy-logic feed-back control scheme to control

electron density and ion energy. The first-wafer effect is eliminated for two different etch

processes, and electron density is demonstrated as a more effective controlled variable

than ion current for etch processes operated at low bias power. A custom-built microwave

interferometer measures plasma electron density in real time, but requires adaptations

to the wall of the plasma chamber. The fuzzy logic-based controller minimises the

number of control actions used, and outperforms a PI controller to which it is compared.

Although the first-wafer effect can be eliminated using feed-back control of electron

density and ion energy, the authors find that etch disturbances due to pressure changes

cannot be compensated for by plasma electron density control alone.

Klimecky et al. [286] show that real-time control of electron density can be used

to compensate for transient chamber wall conditions, eliminating the first-wafer effect

and reducing the etch rate variance, without affecting the resultant etch profile. A PI

controller is used and the electron density is monitored in real-time using broadband

RF, a microwave resonance based sensor. An ellipsometer is used to measure the etch

rate in real time, but is not included in the feed-back control system. The broadband

sensor requires modification to the chamber sidewalls, but is reported to not interfere

with the etch process.

8.2 Motivation

This chapter proposes to use plasma impedance monitor (PIM) measurements for VM

of electron density for the purposes of non-invasive electron density control in an indus-

trial plasma chamber. The aim of the work is the development of a closed-loop control
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system capable of maintaining a consistent plasma electron density subject to unmea-

sured disturbances similar to those brought about by PM events. The VM scheme can

be implemented relatively easily in a production environment, without the necessity

for permanent physical additions or changes to the etch chamber. To the best of the

author’s knowledge, this work documents the first application of predictive functional

control (PFC), a variant of MPC, to real-time control of plasma electron density.

As emphasised by Klimecky et al. [286] and Lin et al. [285], control of electron

density during production operations is desirable for increasing process stability and

reducing the effects of drifts and shifts in system characteristics. Steinbach [215] also

emphasises that the plasma electron density is a key variable affecting etch process

performance. Imai [199] demonstrates the feasibility of using etch process variables for

VM of electron density for fault detection purposes.

As shown in Chapters 6 and 7, preventative maintenance (PM) events have a large

influence on etch performance and VM model estimation accuracy. PM events involve

the routine replacement of components, such as electrodes and ceramic covers, that have

been exposed to etchant chemicals from possibly over 1000 wafer etch and cleaning cycles.

Although the replacement components are macroscopically identical to those that are

removed from the chamber, microscopic differences in the electrical connections made

between components when they are replaced change the electrical characteristics of the

chamber. Changes in such component connections are more influential as the applied

RF frequency increases [128]. At the high frequencies in use during plasma processing,

changes in impedance, stray capacitances, and stray inductances cause considerable

changes to the electrical behaviour of the chamber. The electrical path between the

powered chamber electrode and ground (the ground path) influences plasma variables

such as the ion flux to the etching wafer and the DC bias of the wafer in the chamber

[282]. Hence, changes in impedance of the path between the powered chamber electrode

and ground brought about by PM events can cause the etch performance of the chamber

to vary dramatically between maintenance cycles.

For the experiments described in this chapter, a modified match box that allows

manual control of impedance is installed on the ground path from the chamber. Hence,

variations in the ground impedance can be realised as required, partially simulating the

effect of PM events. The ground impedance variations act as unmeasured disturbances

to the plasma, changing the plasma variables such as electron density, and affecting the

etch performance.

The measurement of electron density is first achieved through the use of a microwave

hairpin resonator probe, described in Section 2.5.7. However, the invasive nature of the
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microwave probe makes it unsuitable for use in a production environment. To overcome

this obstacle, a non-invasive VM system using PIM data is developed to estimate the

plasma electron density in real time, as described in Section 8.5. This VM system is

integrated into the feed-back control loop using both PI and MPC schemes as detailed

in Sections 8.4 – 8.7. Finally, in Section 8.8, an adaptive scheme using recursive least

squares is implemented to update the PFC internal model parameters in real time in

response to pressure disturbances that change the relationship between RF power and

electron density.

8.3 Experimental equipment

Figure 8.2 shows all of the connections and tools used to implement the real-time VM and

control system. The control calculations are performed using MATLABr code, where

a National Instruments (NI) USB-6009 device is used to take measurements from the

PIM sensors and to control the power delivered from the RF generator to the chamber

electrodes. Electron density measurements are taken using a hairpin resonator probe in

conjunction with a microwave source and an oscilloscope, which are connected to the

computer system using a TCP/IP connection. Optical emission spectroscopy (OES) and

digital PIM data are stored on a separate database that is not accessible to the control

system in real time. A variable matchbox is used to vary the impedance of the ground

path from the plasma chamber and hence act as a disturbance to the process. The set

up of the plasma chamber, PIM sensors, and hairpin probe are examined in more detail

in Sections 8.3.1 – 8.3.3.

8.3.1 Plasma etch chamber

A capacitively-coupled, top-powered, parallel-plate plasma etch chamber is used for the

analysis presented in this chapter. This production chamber has a full suite of etch

gases available for experiments including helium, chlorine, oxygen, SF6, HBr, and C2F6

that are delivered via mass flow controllers (MFCs). Chamber pressure is automatically

controlled to manually specified set points by means of a gate valve between the etch

chamber and the vacuum turbo pump. The electrode spacing can be varied from 0.5 – 5

cm.

For simplicity, safety, and cost effectiveness, the experiments carried out in this

chapter use helium plasma. The electrode spacing is kept constant at 5 cm, and the

chamber temperature is uncontrolled, with experiments carried out when the chamber
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Figure 8.2: Virtual metrology and control hardware. This figure depicts the hardware
devices and their interconnections used to achieve real time virtual metrology and

control of electron density.

is “warm” for consistency, i.e. a plasma is fired for 15 – 20 mins to heat the chamber

before experimental data is recorded. The chamber parameters such as pressure, gas

flow, and temperature are controlled and monitored by embedded system software on

the etch chamber that controls the MFCs, chamber gate valves, and all further necessary

subsystems.

Chamber power control

An RF generator situated beneath the semiconductor factory floor delivers up to 625 W

of 13.56 MHz RF power to the topmost chamber electrode. During normal production

operations, the amount of delivered power is controlled via a 0 – 10 V reference signal

generated by the embedded system on the chamber. The reference signal system operates

on a linear scale such that a reference signal of 0 V requests 0 W, and 10 V requests 625

W etc.

To allow automatic control of the chamber power, the reference signal is intercepted

in the fabrication environment. A NI USB-6009 data acquisition device is used to
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generate an analog reference signal which is then connected to the RF generator. The

USB-6009 device is capable of generating a voltage signal in the range 0 – 5 V and hence,

a DC amplification circuit with a gain of 2 is used to amplify the reference signal to the

desired 0 – 10 V range. Noise attenuation filters are used in the amplifier to ensure that

no 13.56 MHz interference is passed to the generator. The USB-6009 is controlled using

software scripts implemented in the MATLAB environment.

Chamber grounding

The lower (target) electrode in the etch chamber is grounded through a modified match

unit that allows the impedance of the path between the lower electrode in the chamber

and ground to be varied. This lower match unit is modified such that the position of the

load capacitor can be varied remotely, effecting a total impedance of between 0 – 60 Ω.

For the remainder of this chapter, the impedance of the path to ground will be referred

to as the “ground impedance”. Variations in the ground impedance act as disturbances

to the plasma in the chamber. As discussed in Section 8.2, these variations are used to

simulate possible changes that can occur as a result of a PM operation

A plasma mode change is observed as the ground impedance is raised above approx-

imately 25 Ω, such that the plasma appears to suddenly move away from the grounded

electrode and towards the chamber walls. Once the mode changes the ground impedance

has negligible further effect on the plasma electron density where the measurement takes

place. As a result, the control experiments are restricted to the 0 – 25 Ω range of lower

impedance.

8.3.2 PIM sensors

As explained in Section 2.5.8, a plasma impedance monitor (PIM) is an electronic sensor

that is installed between the matching network and the plasma electrodes. The PIM

sensor provides information about the waveforms generated as a result of the non-linear

impedance presented by the plasma on the power supply circuitry. Information on the

current, voltage, and phase at the fundamental frequency of 13.56 MHz and up to 52

harmonics of this frequency is recorded by the PIM sensors used. For the purposes

of the experiments in this chapter, two PIM sensors are used, one installed on each

electrode. The upper PIM is installed on the powered or upper electrode of the chamber,

and provides information on the applied RF power. The lower PIM sensor records

information about the path to ground from the chamber, and is used to measure the the
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PIM sensor Channel Variable

Upper PIM 1 VL0
Upper PIM 2 IL0
Upper PIM 3 PL0
Upper PIM 4 - inoperational -

Lower PIM 1 VL0
Lower PIM 2 IL0
Lower PIM 3 PL0
Lower PIM 4 ZL0

Table 8.1: Configuration of analog PIM channels. VL0, IL0, PL0, and ZL0 represent
the fundamental voltage, current, phase and impedance values respectively.

manual changes in impedance realised by a modified match unit, as described in Section

8.3.1.

Digital data from the PIM sensors are recorded in a database by proprietary software

owned by Lam Research. However, the database information is only available after each

etch has been completed, preventing real-time access to the digital information for real-

time control or VM purposes.

Four programmable analog output channels can provide four analog signals repre-

senting PIM variables in real time from each PIM sensor. To allow real-time VM, the

analog outputs are sampled using the eight analog input channels of the NI USB-6009

which is interfaced to the control computer. The USB-6009 is capable of sampling

each channel at 6 kHz. During control experiments, mean values of the analog signals

recorded during each control sampling period are taken to suppress noise.

The analog outputs are assigned to the variables shown in Table 8.1. The analog

PIM signals cover a 0 – 5 V range. The analog signals are converted and scaled to

the correct units (amps for current, angle for phase etc.) using MATLAB software in

the control computer during each sample. The match between the digital and analog

signal for the fundamental current (IL0) is shown in Figure 8.3, after the analog signal

is converted and scaled to the correct units.

There are two issues with the analog signals that must be taken into account dur-

ing their use for real-time control. Firstly, the analog outputs experience a delay of

approximately 0.5 seconds due to the internal operation of the PIM sensors. This time

delay is addressed later in Section 8.4. Secondly, as a result of the small voltage range

(0-5V) used to represent a large range of phase angles (0 – 180◦), the phase signals are

susceptible to noise on the analog outputs. This noise results in noisy power estimates

because the power calculations using PIM measurements are especially sensitive to the

phase values (see Section 2.5.8) [38]. Erratic values for power are an issue because the
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power values are used in Section 8.5 during the development of VM models. An example

of the phase signal noise is shown in Figure 8.4.

Figure 8.3: Fundamental current reading from analog and digital PIM outputs. The
digital outputs are not available in real time and thus, they can only be analysed off-line.

The analog outputs are delayed by approximately 0.5 s.

8.3.3 Hairpin Resonator probe

A hairpin probe is used to provide a real-time measurement of electron density for use in

the development of VM models and testing of control algorithms in this Chapter. The

operation and construction of the reflection-type hairpin probe is described in Section

2.5.7. For the experiments described in this chapter, the probe reaches the plasma

through a modified chamber window fitting on the production etch chamber. Platinum

wire is used for the hairpin resonator because of its resistance to etching gases and its

high melting point of 1768 ◦C.

Probe setup

The driving current signal for the probe is generated using a microwave source which

varies the signal frequency from 2 to 3.8 GHz. The reflected current trace is captured

using a Tektronix TDS3034B oscilloscope that is accessed using a TCP/IP direct network

connection to the control computer and analysed using MATLAB software. The change

in resonance frequency caused by the plasma is determined by comparing the downloaded
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Figure 8.4: Fundamental phase reading from analog and digital PIM outputs. The
phase value is susceptible to noise because of a scaling effect. Power calculations using

the phase value are sensitive to this noise on the analog phase value.

trace to a reference signal recorded with the plasma powered off as shown in Figure 8.5.

The change in resonance frequency can the be related to the plasma electron density

using Equation (2.33). Similar to the work of Piejak et al. [32], the reference signal

is updated when required to cater for small but observable changes in the vacuum

response of the probe due to thermal distortion. Each trace requires 300 – 400 ms to

download from the oscilloscope to the control computer, limiting the sampling rate to

approximately 2.5 Hz maximum.

Error sources

While the hairpin probe provides reliable measurements of electron density the majority

of the time, under certain circumstances, care must be taken with the measurement

results. It is observed throughout the experiments in this chapter that the height of

the resonant peak of the probe diminishes at plasma powers greater than 500 W. Less

pronounced peaks can cause inaccurate measurements because the difference between

the reflected waveform and the reference waveform is reduced. Such reductions com-

plicate the detection of the peak position because the maximum difference between the

waveforms can be reduced to values comparable to the background noise of the system.
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Figure 8.5: (a) Reflected signals from hairpin probe in vacuum and during plasma
discharge. The resonant frequencies of the probe without and with the plasma are
labelled f0 and fr respectively. (b) Difference between the vacuum and plasma reflect
signals. The resonant peak undergoes an upward shift upon plasma ignition due to the

change in the dielectric medium between the probe tips.

An example of this phenomenon is shown in Figure 8.6. Where such errors occur

during data collection, the erroneous samples are manually corrected via substitution

where possible, or otherwise removed after the data is collected. However, during online

control of electron density, erroneous measurements of electron density cause oscillations

in the manipulated variables, with consequent oscillations in electron density. Hence,

operations in high power regimes are avoided where possible.

8.4 PI Control of electron density

Using the apparatus described in Section 8.3, the plasma electron density can be con-

trolled using a proportional-integral (PI) controller, while measuring the electron density

in real time using the hairpin probe.
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Figure 8.6: Erroneous electron density readings from hairpin probe. At high powers,
the resonant peak can become diminished such that the difference between the reflected
and reference signals is of comparable size to other differences caused by noise. As a
result, the peak position can be detected incorrectly, corrupting the electron density

measurements.

8.4.1 PID control

Proportional-integral-derivative control (PID) control offers one of the simplest and yet

most efficient solution to many real-world control problems. Since the introduction of

PID control in 1910 and the Ziegler-Nichols tuning methods in 1942 [287], the popularity

of PID control has grown immensely. Although a wide variety of other control schemes

now exist, controllers based on PID algorithms are still in use in more than 90% of

industrial applications [288] and a large range of PID tuning techniques [289], software

packages and hardware modules are available to implement PID control [290].

A standard PID controller, also known as a three-term controller, has a transfer

function given by

C(s) = Kprop +Kint
1

s
+Kders (8.1)

where Kprop is the proportional gain, Kint the integral gain, and Kder the derivative

gain. The controller is implemented in feed-back control systems as shown in Figure

8.7. The proportional term provides a control action proportional to the error signal,

the integral term reduces steady-state errors through low-frequency compensation by

an integrator, and the derivative term improves the transient response through high-

frequency compensation by a differentiator. While, in reality, the controller parameters
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Rise
Time

Overshoot Settling
time

Steady-
state
error

Stability Noise
immu-
nity

Increasing
Kprop

Decrease Increase Small
Decrease

Decrease Degrade None

Increasing
Kint

Small
Decrease

Increase Increase Large
Decrease

Degrade Increase

Increasing
Kder

Small
Decrease

Decrease Decrease Minor
change

Improve Decrease

Table 8.2: Effects of independent P, I, and D tuning [290].

are mutually dependent in tuning, a basic guide of the individual effects of the three

terms is shown in Table 8.2.

Figure 8.7: Feed-back control loop with PID control. The process input u is calculated
by the controller C(s) based on the error e between the set point and the process output.

The discrete implementation of the PID controller equation is such that the manip-

ulated variable is given by

u(k) = Kprope(k) +
k∑
i=1

e(i)Ts +Kder

(
e(k)− e(k − 1)

Ts

)
(8.2)

where Ts is the sample period. This discrete implementation employs a discrete integra-

tor using the Euler method of integration and a first-order derivative using a backward

finite difference.

Because the derivative term Kder can increase sensitivity to measurement noise,

which will be a factor when using the VM schemes, it is not used in the electron density

control application described here. Hence, the controller used is termed a PI controller.

8.4.2 PI control results

The PI controller is first implemented using the hairpin probe measurements for real-time

feed-back. As such, the sampling frequency is limited to a maximum of 2 Hz (see Section

8.3.3). Figure 8.8 shows the experimental results of an electron density set point tracking
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exercise with the PI controller. In future iterations of the control scheme, the electron

density set point can be decided depending on the etch performance required, and may

be required to follow changes in set point as different process steps are implemented.

However, for the purposes of this work, random electron density set points are used to

demonstrate the controller performance. Approximate initial values for the controller

parameters are obtained using a MATLAB process simulation and, following this, the

controller is tuned by hand with Kprop = 1.7, Kint = 6.8 resulting in a relatively slow

time constant of 1.35 seconds. The ground impedance is kept constant throughout this

experiment. Figure 8.8 also shows the controlled variable, the chamber power.

Figure 8.8: Electron density control with slow PI tuning. The PI controller is tuned
such that Kprop = 1.69, Kint = 6.78. The system closed-loop time constant is approxi-

mately 1.35 seconds.

The PI controller is capable of countering disturbances in the lower impedance value

of the chamber. Changes in the ground impedance disturb the electron density of the

plasma. The PI controller returns the electron density back to the required set point

value within 5 seconds, as shown in Figure 8.9, where both step and gradual changes in

ground impedance are introduced.

The dynamic response of the closed loop system can be speeded up by increasing the

proportional and integral gains of the PI controller. Figure 8.10 shows the controlled

response for two sets of controller parameters; Figure 8.10(a) shows the response with

Kprop = 3, Kint = 17 and in Figure 8.10(b), Kprop = 5, Kint = 30. The first response

in Figure 8.10(a) is faster than the response shown in Figure 8.8 but suffers from slight

overshoot and oscillations at some set point changes. However, disturbances introduced

262



VM and control of electron density

Figure 8.9: Electron density control with system disturbances. The PI controller
returns the plasma electron density to the electron density set point less than 5 seconds

after step changes in the ground impedance value.

using the lower impedance value are compensated for within 2 seconds by the controller.

The PI controller parameters used to create the response in Figure 8.10(b) are such that

slowly-decaying oscillations appear in the electron density after set point changes and

disturbances.

(a) (b)

Figure 8.10: Fast control using a PI controller with probe readings. (a) The PI
controller parameters are set to Kprop = 3, Kint = 17 to produce a fast response with
small oscillations at some set point changes. (b) The PI controller parameters are set
to Kprop = 5, Kint = 30 such that the system is almost unstable with slowly-decaying
oscillations in electron density, even without the presence of random disturbances as in

8.10(a).
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8.5 Virtual metrology of electron density

The hairpin probe is an invasive method of determining the plasma electron density

that presents a number of disadvantages when used for real-time control of the electron

density in the etch chamber.

• Production wafers cannot be etched while the probe is inserted in the chamber as

the plasma is perturbed around the probe body, disturbing the etch process in the

space surrounding the probe, reducing the spatial uniformity of the plasma and

hence the etch variables.

• The sampling frequency of the probe is limited to 2 Hz due to the time required to

download and process the reflected current waveform from the oscilloscope during

each sample. This limitation on the sampling frequency limits the speed of the

control algorithms that can be implemented. Ideally, approximately 6 – 8 samples

should be obtained within the closed-loop rise time. With a sampling frequency

of 2 Hz, rise-times of less than 3 – 4 seconds may not be achieved reliably.

Considering these issues, a VM system is proposed to obtain estimates of the plasma

electron density. Virtual measurements of the electron density can be obtained in real

time using the PIM variables. Although digital information from the PIM sensors is not

accessible in real time, the analog outputs can be sampled for VM purposes in real time

as the etch process proceeds.

A control system based on the virtual measurements of electron density, rather than

the microwave probe, would allow etching of product wafers to proceed unhindered and

would also be capable of sampling information from the chamber at a rate faster than

2 Hz. The remainder of Section 8.5 describes the development of a a VM model that

can estimate the plasma electron density using the analog measurements from the PIM

sensor as VM model input variables.

8.5.1 Experimental design

Initially, the VM system is used to estimate the electron density in a helium plasma with

helium gas flowing at 200 sccm in the etch chamber at a constant pressure of 250 mTorr.

The VM system is designed to operate over a range of ground impedances and applied

powers. The electrical dynamics of the etch chamber system are virtually instantaneous,

such that a step change in power is reflected instantly in a step change in plasma electron

density. As such, static VM models are employed.
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The VM models are empirical models created using an experimental data set col-

lected from the chamber. To collect data suitable for VM model creation, electron

density measurements are taken using the hairpin probe over a range of powers and

ground impedance values. The electrode power is varied from 200 – 600 W and the

ground impedance is varied from 0 – 26 Ω. The experimental inputs are shown in Fig-

ure 8.11(a) and the corresponding electron density values are shown in Figure 8.11(b).

Control experiments are restricted to the 0 – 26 Ω range of ground impedance so that

the plasma remains in the same mode over the complete experimental range.

(a) (b)

Figure 8.11: Designed experiment used for development of electron density VM
model. (a) shows the system inputs for the experiment, and (b) shows the corre-

sponding electron density recorded using the hairpin probe.

To avoid biasing the model in favour of lower power operation, from which there

are more samples in the collected data, three samples from each unique combination of

power and lower impedance are extracted from the data as shown in Figure 8.12 and

used for VM modelling. A separate experimental data set containing data from random

combinations of power and lower impedance is used for model testing and validation.

8.5.2 Modelling results

Least squares regression (LSR), artificial neural networks (ANNs), and Gaussian process

regression (GPR) models are investigated as candidate VM modelling techniques (see

Chapter 3 for information on these techniques). The ANNs used have a single hidden

layer that is varied in size from one to fifteen neurons and initialised five times randomly

during model training to determine the optimal network size and best solution. The GPR

models use a squared exponential covariance function. The modelling performance of

all three techniques is summarised in Table 8.3.
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Figure 8.12: Samples used for VM modelling. Three samples from each unique
combination of ground impedance and power are used to train the electron density VM

models.

Training Data MSE Test Data MSE Max Test Error

LSR 0.149 0.344 2.446
ANN 0.070 0.195 1.407
GPR 0.045 0.296 2.423

Table 8.3: Electron density VM estimation results. R2 values for all models are
greater than 0.99.

The ANN model is the best VM model according to Table 8.3, estimating the cham-

ber electron density for the unseen test data most accurately. Figure 8.13 depicts the

match between the model estimates and the recorded electron density for the model test

data. Offsets between the estimated and real values of electron density are observed for

some data points. These offsets are rarely greater than 1×109 cm−3 (∼ 2−3% absolute

error), which is deemed an acceptable level of error for the experimental control work.

8.5.3 Virtual metrology delay

The virtual measurement of electron density experiences a delay of approximately 0.5

seconds as a result of the response times of the PIM analog signals. Figure 8.14(a) shows

the delay between the VM measurement and the hairpin probe measurement, and Figure

8.14(b) shows the delay between a change in power and the corresponding analog PIM

signal response at a sample rate of 8 Hz.
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Figure 8.13: Electron density estimation using the ANN-based VM model on unseen
test data.

(a) (b)

Figure 8.14: Delay in VM estimates of electron density. (a) shows actual electron
density measurements recorded at the same time as the VM measurements, while (b)
shows the delay between a step change in power and a corresponding change in the

virtual measurement of electron density at a sampling rate of 8 Hz.

8.5.4 PI control using virtual metrology

Control of electron density can be achieved independently of the hairpin probe measure-

ments using the newly developed VM model from Section 8.5. The virtual measurement

of electron density is used in the feed-back control loop in place of the probe measure-

ment and used to calculate the electron density error signal for the PI controller. At

a sampling frequency of 2 Hz, measurements from the hairpin probe can be taken in
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parallel to monitor the actual electron density and validate the VM system. Control

results for Kprop = 1.69, Kint = 6.78 are shown in Figure 8.15. Disturbances to the sys-

tem are successfully followed by the VM model and compensated for by the PI control

algorithm.

Figure 8.15: Control of electron density using VM measurements at 2 Hz with the PI
controller parameters set to Kprop = 1.69, Kint = 6.78. Disturbances to the system are
successfully followed by the VM model and compensated for by the control algorithm.

Tuning the PI controller with Kprop = 3, Kint = 17 to speed up the closed-loop

response of the system causes large, slowly decaying oscillations to appear in the electron

density output as shown in Figure 8.16. Such tuning served to reduce the response time

and cause only small oscillations when actual electron density measurements were used in

the control loop in Section 8.4.2, but introduces large oscillations when used with the VM

system due to the VM measurement delay described in Section 8.5.3. The PI controller

is incapable of compensating for the delay in the system without sacrificing response

time. Increasing the sampling frequency of the PI control schemes will not improve this

situation, as the measurement delay is fixed at 0.5 seconds. Further increases in Kprop

and Kint to the levels that produced the response shown in Figure 8.10(b) causes an

unstable electron density response.

To explicitly cater for the delay in the VM measurement of electron density, model

predictive control (MPC) is employed, as described in Section 8.6.
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Figure 8.16: Control of electron density using VM measurements at 2 Hz with the PI
controller parameters set to Kprop = 3, Kint = 17. Oscillations in the system response
are observed because the PI controller, when tuned to a produce a fast response, cannot

cater for the the measurement delay introduced by the VM model.

8.6 Predictive functional control

Model predictive control (MPC) or model-based predictive control (MBPC) was first

used by the defence and petroleum industries in the 1970’s. Since that time, MPC has

been applied to thousands of control problems, spanning a plethora of industries [291].

MPC is the only control technique more advanced than standard PID control to have

made a significant and widespread impact on industrial process control [292].

While classical control techniques such as PID control are suitable for many simple

systems, the control of processes with considerable time delays, high-order dynamics,

and/or constrained actuators is not easily accomplished. MPC provides a solution to

these control challenges, and has become an attractive paradigm for industrial processes,

offering a combination of simplicity and effectiveness. Originally, MPC was restricted

to slower processes because it can require the solution of convex optimisation problems.

However, improvements in computational capabilities in recent years have allowed MPC

algorithms to be applied to high-bandwidth applications.

A wide range of MPC algorithms exist. A list of the main variants [291, 293] includes

• Dynamic matrix control (DMC)

• Extended prediction self-adaptive control (EPSAC)

269



VM and control of electron density

• Model algorithmic control (MAC)

• Quadratic dynamic matrix control (QDMC)

• Generalised predictive control (GPC)

• Model predictive heuristic control (MPHC)

• Predictive functional control (PFC)

PFC is chosen as the MPC variant for the control of electron density in the plasma

etch chamber. PFC is chosen for a number of reasons; it is easily implemented using a

first order approximation to the system, it uses a single intuitively interpreted parameter

during tuning, it is designed for single-input single-output systems, and it can control

the etch system taking the VM delay into account. A closed form solution can be derived

for a first-order PFC implementation, negating the requirement for online optimisation

during control operations. An alternative option would be to use a conventional Smith

predictor, but this is not considered in this research due to a high sensitivity to modelling

errors [294].

8.6.1 Fundamental concepts

Three concepts that are central to all MPC algorithms are introduced in this section,

and discussed from a PFC perspective. The treatment and use of these concepts differ

from one MPC variant to another. The concepts are:

1. The internal model

2. The reference trajectory

3. The calculation of the manipulated variable.

PFC is differentiated from the other forms of MPC in that the internal models

used by PFC are independent internal models that depend solely on the process input.

Furthermore, the manipulated variable is constructed on a set of, typically polynomial,

basis functions [295].

Internal model

The internal model is a model of the plant embedded in the predictive controller that is

capable of predicting future process outputs. The internal model is not restricted to a
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particular form and can be formulated as a transfer function, state-space, step-response,

non-linear model etc. In the development of PFC control law described here, a first-

order process is examined because many processes in production can be approximated

by a first-order system model [289].

Consider a first-order process with a gain Kp and a time constant τp subject to an

input u. The process is represented by the Laplace transfer function

Gp(s) =
Yp(s)

Up(s)
=

Kp

1 + τps
. (8.3)

The zero-order hold (ZOH) equivalent of Gp(s) leads to the difference equation

yp(k) = apyp(k − 1) + bpKpu(k − 1), (8.4)

where yp is the process output, u is the process input, k is the current sample number,

ap = e
−Ts
τp , bp = 1 − ap, and Ts is the sampling period. The ZOH represents the effect

of using practical digital to analog convertor (DAC) for digital control. The process

described by Equation (8.4) can be modelled by a first-order system model with a gain

Km and a time constant τm as

ym(k) = amy∗(k − 1) + bmKmu(k − 1), (8.5)

where ym is the model output, am = e
−Ts
τm , bm = 1 − am. Two main categories of

internal model arise, depending on the form of y∗ in Equation (8.5):

1. Independent models. Independent models calculate the model output ym(k)

using only the known measured process inputs and past model outputs, as depicted

in Figure 8.17 (a). Hence, for independent models, y∗(k − 1) = ym(k − 1). The

process output and internal process variables are not used to calculate the future

model outputs. Independent models are typically used in PFC. As the real process

may be subjected to unknown disturbances and the process model will not be

perfect, the process output yp(k) and the model output ym(k) may not be equal.

However, yp(k) and ym(k) will evolve in parallel. Hence, during PFC, the process

model is used to calculate a prediction of the increment of the process output

rather than the absolute response of the process subjected to a particular input

[295].
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2. Realigned models. In a realigned model, the model output ym(k) is calcu-

lated using known and measured process inputs and the past measured (or esti-

mated) process outputs as shown in Figure 8.17 (b). Hence, in a realigned model,

y∗(k − 1) = yp(k − 1). Industrial vendors ADERSA claim that realigned models

using noisy output measurements often suffer from offset errors [296]. Numerical

imprecisions may arise for systems of order greater than one with unstable poles

[295].

Figure 8.17: MPC internal model types. (a) Independent models calculate ym using
only the process inputs and past model outputs. (b) Realigned models use process

measurements and past process outputs to calculate the model output ym.

For the remainder of this discussion, an independent model is assumed. The predic-

tion of the process response using the process model described by Equation (8.5) is an

equivalent problem to the solving of differential or difference equations. The solution of

a finite difference equation from the instant k = 0 to a future time consists of two terms:

the free solution and the forced solution.

The free, homogenous, initial condition response, or natural solution yA(k) is the

model output that results when the future input signal is zero and the past input and

output signals are non-zero. The free solution represents the process output when no
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further external stimulus is applied and, in the case of asymptotically stable systems,

the free solution tends towards zero according to the dynamics of the process. For the

first-order linear model described by Equation (8.5), the free solution is given by

yA(k +H) = y(k)aHm, (8.6)

where H is an integer number representing the future point for which the model

output is to be found.

The forced, complementary, or inhomogeneous solution yF (k) is the process output

when an external known stimulus is applied, assuming that all past signals, both input

and output, are zero. For example, if a step input is applied with all past signals zero,

the forced solution is the process step response. The future non-zero input signal is

known and the future output is calculated by the model. For the first-order linear

model described by Equation (8.5), the forced solution is given by

yF (k +H) = Kmu(k)(1− aHm), (8.7)

assuming, for simplicity, that u(k) is constant. For linear systems the full solution

ym(k) is the sum of the free yA and the forced yF responses, such that

ym(k +H) = yA(k +H) + yF (k +H) = ym(k)aHm +Kmu(k)(1− aHm). (8.8)

Reference trajectory

In MPC algorithms, the reference trajectory is the desired future behaviour of the con-

trolled variable. The reference trajectory is initialised on the current process output

yp(k), and defines the desired path to be taken by the controlled variable towards the

current set point S(k). The reference trajectory can be directly interpreted as the de-

sired closed-loop response when the process is subjected to a set point change and is

re-initialised at each sampling instant using the measured or estimated process output.

The “coincidence horizon” is the set of points in the future where the process and

the model outputs should be equal. For the sake of simplicity, only one coincidence

point H is considered in this explanation. Usually, an exponential reference trajectory

is taken because such a trajectory takes only one point for initialisation, responds in

a predictable manner without overshoot, and is easy to calculate in real time. For a

constant set point S(k) = S, the exponential reference trajectory is defined such that
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the error signal at a time k +H is

S − yp(k +H) = e(k +H) = e(k)λH , (8.9)

where λ = e
−Ts
τr , and τr is the required closed-loop time constant of the controlled

system. One of the benefits of PFC is that the controller is tuned by simply adjusting

the value of τr, an easily interpretable variable with physical meaning.

Assuming a constant set point, the desired process output increment at the coinci-

dence point (see Figure 8.18) ∆yp(k +H) is such that

∆yp(k +H) + e(k +H) = e(k) (8.10)

Hence

∆yp(k +H) = −e(k)λH + e(k) = e(k)(1− λH) = (S − yp(k))(1− λH) (8.11)

Note that rather than using only one coincidence point H, a coincidence horizon

that consists of a number of points in the future can also be defined. The error between

the reference trajectory and the predicted process output is minimised at all points on

this horizon using more complex minimisation techniques. Multiple coincidence points

are not considered in the work of this chapter.

Calculation of the controlled variable

At each sample time k, the value for ∆yp(k + H) is calculated from the process mea-

surement, the reference trajectory, and the current set point value. Hence, it is re-

quired to calculate the future values of u(k) that will produce a model output increment

∆ym(K +H) that is equivalent to ∆yp(K +H) at the sample time k.

To determine the required process inputs, the future model outputs ym(k+H) must

be calculated, and as discussed earlier in this section, consist of two components:

• The effects of previous inputs that cannot be altered, but are known, i.e. the free

output yA(k +H).

• The effects of future inputs that can be manipulated, i.e. the forced output yF (k+

H) due to future values of u.

274



VM and control of electron density

Figure 8.18: Reference trajectory, model increment, and process increment in PFC.

It is typical to impose a structure upon the future values of the manipulated variable

u(k). In PFC, the future manipulated variable is structured as a linear combination of

basis functions Fj , which are chosen according to the nature of the process and the set

point

u(k + i) =
N−1∑
j=0

µjFj(i) (8.12)

where j = 0, 1, · · · , N −1 and 0 ≤ i ≤ H. It is required to determine µj , the projections

of u(k) onto the finite set of basis functions. Thus the manipulated variable is expressed

as a weighted sum of N basis functions.

Normally, PFC uses a set of basis functions that consist of a polynomial basis, such

that Fj(i) = ij , where j = 0 for steps, j = 1 for ramps, and j = 2 for parabolas.

The majority of set point reference paths can be expressed as combinations of these

functions [297]. Using manipulated variables derived from basis functions leads to bet-

ter control performance in terms of set point tracking, simpler calculations, and easier
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implementation [295].

In the elementary case of a first-order process and step changes in the control set

points (the case that applies here), the basis functions reduce to N = 1, F0(i) = i0 = 1.

In this case u(k+ i) = u(k), i.e., a constant future manipulated variable is assumed such

that it is the known forced output response of the internal model to a unit step that is

multiplied by the value of u(k).

At the next sample time, k+1, the procedure is repeated, resulting in a new reference

trajectory, in essence creating a moving horizon.

As seen before

∆yp(k +H) = (S − yp(k))(1− λH), (8.13)

and ∆ym(k +H) is given (see Figure 8.18) by

∆ym(k + h) = ym(k +H)− ym(k), (8.14)

∆ym(k + h) = yA(k +H) + yF (k +H)− ym(k), (8.15)

∆ym(k + h) = ym(k)aHm +Kmu(k)(1− aHm)− ym(k). (8.16)

The equation ∆yp(k +H) = ∆ym(k +H) is fulfilled by

(S − yp(k))(1− λH) = ym(k)aHm +Kmu(k)(1− aHm)− ym(k), (8.17)

which can be solved for the manipulated variable u(k)

u(k) =
(S − yp(k))(1− λH)− ym(k)aHm + ym(k)

Km(1− aHm)
, (8.18)

or more simply

u(k) = k0e(k) + k1ym(k) (8.19)

where k0 = 1−λH
Km(1−aHm)

, k1 = 1
Km

. This is the fundamental PFC control equation in

its most elementary form [295]. Using a block diagram description, the control law in

Equation (8.18) can be represented by Figure 8.19.
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Figure 8.19: Block diagram implementation of PFC control law. The zero-order hold
equivalent of the process model (Equation 8.5) is used in this implementation.

8.6.2 Systems with a pure time delay

Unlike PID controllers, predictive controllers can take pure time delay τd associated with

the plant into account. Given a system with a time delay of τd = dTs seconds, where d

is the number of sampling periods equivalent to the time delay, inputs applied at time

k will only affect the process output τd seconds later.

The delay is not included in the process model so that, ideally, yp(k) = ym(k − d)

and ŷp(k + d) = yp(k + d) = ym(k), where ŷp denotes a future prediction of yp. Hence,

due to the delay of d samples, the change in the process output yp between times k and

k+ d is equal to the change of the model output ym between times k− d and k, yielding

yp(k + d)− yp(k) = ym(k)− ym(k − d) (8.20)

which rearranges to

ŷp(k + d) ' yp(k + d) = yp(k) + ym(k)− ym(k − d). (8.21)

The reference trajectory is not initialised using the current of value yp(k), but on the

predicted value of yp(k + d) in order to anticipate its response. ŷp(k + d) is simply an

extrapolation in time of the current value of yp(k) using the response of the model. The

control equation given in Equation (8.18) is still valid by replacing yp with the expression

for ŷp(k + d) from Equation (8.21).
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Precision Transient response Robustness

Basis Function 1 0 0

Reference Trajectory 0 1 0.5

Coincidence Horizon 0 0.5 1

Table 8.4: Effect of PFC parameters on controller tuning [293]. The effect of each pa-
rameter on the corresponding controller performance is graded between 0 for minimum

and 1 for maximum influence.

8.6.3 Controller Tuning

Three principal specifications are of interest during the tuning of a control system,

• the controlled variable precision in steady state,

• the dynamic response of the controlled variable to changes in set-point, and

• the robustness of the control system to model uncertainties and process structural

variation.

Tuning of PFC controllers is a function of the order of the basis functions, the reference

trajectory, the control horizon, and the closed-loop response time (CLRT). A general

summary of the influence of the PFC parameters is given in Table 8.4, where the influence

of PFC parameters on precision, transient response, and robustness are graded between

0 for minimum influence and 1 for maximum influence [293].

Many processes in production industries can be approximated by a first order system

model [289], and in the majority PFC control applications, an exponential reference tra-

jectory is used with a single coincidence horizon point and a zero-order polynomial basis

function. In such cases, the main tuning parameter becomes the desired CLRT which

is specified by τr in λ = e
−Ts
τr . Because the uncontrolled process responds according to

the open loop response time (OLRT), the ratio OLRT/CLRT plays an important role

in the controller’s tuning leading to an overshooting or non-overshooting manipulated

variable, u(k). If the CLRT is much smaller than the OLRT at the time of set point

change, the manipulated variable will overshoot. On the other hand, if the CLRT is

much larger than the OLRT, the manipulated variable will generally remain sufficiently

constrained to avoid overshoot [295]. The dynamics of the manipulated variable can be

an issue for physical systems where actuator speed and range is limited. For the plasma

system investigated in this chapter, the OLRT is extremely fast, allowing considerable

freedom in the specification of desired CLRT.
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8.7 Predictive functional control of electron density

PFC is suitable for real-time control of plasma electron density using VM measurements

because it can cater for the measurement delay introduced by the VM system and

produce a first-order exponential electron density response. This section details the

implementation of the PFC algorithm on the plasma etch chamber.

8.7.1 System Model

Figure 8.20 shows the relationship between power and electron density at three different

chamber pressures. Over the range shown, the relationship between the power delivered

to the chamber electrode and the plasma electron density is relatively linear for constant

values of ground impedance and pressure. Significant changes in the system gain occur as

the chamber pressure is changed. Smaller changes in gain are observed at each pressure

set point as the ground impedance of the chamber is altered. To model the system using

a consistent process model, the pressure is fixed at 250 mTorr for the experiments in

this section.

Figure 8.20: Electron density response to power at different pressures. Large changes
in system gain occur as the the chamber pressure is changed. At each pressure set
point, smaller changes in gain are observed as the ground impedance of the chamber is

altered.

At a constant pressure, the system can be approximated as a pure gain Km, with

negligible dynamics and a delay term such that its transfer function is
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Gm(s) =
Ym(s)

U(s)
= Kme

−τds (8.22)

where, Ym(s) represents the system output, the plasma electron density, U(s) rep-

resents the system input, the RF power, and τd = dTs is the VM delay in seconds.

No dynamics are used in this model because the relationship between power and elec-

tron density is effectively instantaneous at the sampling frequencies used in this thesis.

The lack of dynamics in the system model simplifies the PFC control equations since

am = e
−Ts
τm = 0 and the system model equation without delay (from Equation 8.5) will

consist only of the forced solution yF ,

ym(k) = Kmu(k − 1). (8.23)

There will be no free solution yA as the system output does not depend on past

outputs. Hence, the PFC control equation (Equation (8.18)) for the plasma system

becomes

u(k) =
(S − yp(k))(1− λH) + ym(k)

Km
. (8.24)

The electron density response at a fixed pressure with the VM delay included can

be approximated to have a constant gain, and is represented by the linear model

ym(k) = Kmu(k − d)− cm. (8.25)

Equation (8.25) has a non-zero vertical intercept. To allow the system to be treated

as a simple gain term plus delay, the vertical intercept is included in the model as an

input correction term of − cm
Km

, as shown in Figure 8.21. Hence, to the PFC controller,

the plant acts as a pure gain system with a time delay. As described in Section 8.6.2,

the delay term is not included in the internal model during PFC operation.

As shown in Figure 8.20, using fixed values for Km and cm in Equation (8.25) is

not a completely accurate representation of the process response for all values of the

ground impedance at a fixed pressure. However, MPC-based controllers can maintain

control of the system with zero steady state error even in the presence of model mismatch

[295, 296].
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Figure 8.21: PFC block diagram with input correction term. The input correction
term is introduced so that the plant and model appear as simple gain terms to the
PFC controller. The model output is corrected for the system delay as described by

Equation (8.21)

8.7.2 Results at Ts = 0.5s

As a first test of performance, and for direct comparison with the PI controller of Section

8.4, the PFC controller is implemented with a sampling frequency of 2 Hz and a required

closed loop time constant of τr = 1 s. The VM delay is equivalent to one sample time at

this sampling rate. Successful set point tracking is achieved as shown in Figure 8.22(a),

and the controller is capable of correcting for disturbances as shown in Figure 8.22(b).

Small mismatches are seen between the virtual and the real measurements of electron

density at different set points due to VM modelling errors. As expected, the electron

density response is exponential with no overshoot due to the configuration of the PFC

reference trajectory.

Because these experiments operated at a fixed pressure of 250 mTorr, the model

gain term Km is fixed in Equation (8.25) to 0.1104 (determined from results shown

in Figure 8.20) and hence it differs from the actual system gain Kp depending on the

ground impedance setting during experimentation. Although such model mismatch

does not result in steady-state errors in the controlled variable, it does prevent the

requested closed-loop time constant from being achieved. Hence, the time constant of

the controlled electron density varies between 1 s and 2.5 s due to model mismatch at

different operating points when τr = 1. The degree of mismatch between the model

and the process can be gauged by comparing the PFC model output ym with the actual

process output yp (or VM measurement in this case) as shown in Figure 8.23.
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(a) (b)

Figure 8.22: PFC control of electron density with Ts = 0.5 s. (a) shows the controlled
response when the ground impedance remains constant, and (b) shows the controlled
response when random disturbances in ground impedance are introduced. τr = 1 s for

both tests.

Figure 8.23: PFC model output compared to VM measurement of electron density.
The PFC internal model output does not match the output of the process due to model
mismatch, i.e. Kp 6= Km. The degree of model mismatch depends on the operating
point of the system because for the plasma system, Kp varies with ground impedance.

In contrast to the tuning of the PI controller in Section 8.4, the PFC controller is

intuitively tuned by adjusting a single parameter, τr, to achieve faster or slower closed-

loop response times. Figure 8.24 depicts the effect of varying τr to alter the time constant

of the controlled variable. Unlike the PI control results of Section 8.4, overshoot and

oscillations do not appear for relatively fast response times because the system delay
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is explicitly catered for in the controller. Such fast response times cannot be achieved

using the PI controller without taking the VM delay into account since the controller will

continuously effect changes in the manipulated variables that are too late to compensate

for current errors.

Figure 8.24: Effect of adjusting τr with Ts = 0.5 s. Adjusting the required closed-
loop time constant τr increases the response speed of the controlled variable. Some

inconsistencies in the electron density are seen for τr = 0.1 seconds.

8.7.3 Results at Ts = 0.1s

Control at sampling speeds faster than 2 Hz are possible since the virtual measurement

of electron density can be used in the control loop negating the necessity for slow com-

munication with the electron density probe. The limiting factor on the sampling speed is

determined by the computation time for each control output. The computation time for

the VM ANN model output is the most demanding part of the calculations carried out

at each sampling instant. However, the added accuracy of the ANN model over faster

linear models justifies its use. The sampling frequency can be increased five-fold, to 10

Hz, without encountering computational difficulties. The VM and control algorithms

are implemented on one computer using a 10 Hz sampling rate, while, for reference and

validation purposes, electron density measurements are taken using the hairpin probe

on a second computer at the slower sampling rate of 2 Hz. The results for τr = 1 s with

and without process disturbances are shown in Figure 8.25.
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(a) (b)

Figure 8.25: PFC control of electron density with Ts = 0.1 s. (a) shows the controlled
response when the ground impedance remains constant, and (b) shows the controlled
response when random disturbances in ground impedance are introduced. τr = 1 s for

both tests.

The electron density estimate responses for different closed-loop time constants are

shown in Figure 8.26. Although the closed-loop settling time for τr = 0.1 s should be

approximately 3×τr = 0.3 s, this settling time is not achieved due to mismatch between

the PFC model and process gains. Apart from this, the electron density responses are

well-controlled to achieve exponential trajectories, and for τr = 0.5s, 15 samples are

taken per closed-loop settling time.

One disadvantage of increasing the sampling rate is that less time is available to

average the values recorded from the PIM analog signals. As a result, the VM estimates

are more susceptible to noise. When small τr values are used, the controller is more

sensitive to this noise on the VM signal, as seen by irregularities in the trace for τr = 0.1

s in Figure 8.26.

Step changes in ground impedance are unlikely to occur during wafer etching in a

production process; it is more likely that the controller will only have to adjust the

process power to counteract for changes in ground impedance caused by slow processes

such as chamber drift and physical wear and tear. However, intermittent step changes

in ground impedance may be brought about by preventative maintenance (PM) events.

Step changes in electron density set point may occur depending on the requirements of

particular processing recipes.
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Figure 8.26: Effect of adjusting PFC controller τr with Ts = 0.1 s. Reducing the
required closed-loop time constant τr increases the response speed of the controlled
variable. The VM measurement of electron density is noisier at high sampling rates
than at slower sampling rates and the controller is more sensitive to this noise when

tuned with faster response times.

8.8 Adaptive PFC

This section investigates the use of an adaptive algorithm to update the internal model

parameters of the PFC controller using measurements from the process. By correcting

the gain term Km of the PFC model in response to changes in the system gain Kp, con-

sistent electron density response times can be achieved over a broad range of operating

conditions. Model updates are realised using recursive least squares (RLS).

As discussed in Section 8.7.1, in the plasma etch system, changes in Kp can be caused

by either changes in ground impedance or chamber pressure. In Section 8.8.1, the effect

of model mismatch on controller performance is examined, where the model mismatch

is effected by changes in chamber pressure. In Section 8.8.2, a brief explanation of the

RLS algorithm and its application to PFC in this study is presented. Finally, in Section

8.8.3, experimental results using the adaptive control scheme are examined.
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8.8.1 Effects of PFC model mismatch

Artificial simulation of model mismatch

Figure 8.27 shows PFC results for situations with gross mismatch between the PFC

model gain and the actual process gain. The required time response τr for both sets

of results in Figure 8.27 is fixed at τr = 0.3 s. In Figure 8.27(a), the model gain

Km is set higher than the actual system gain Kp ∼ 0.11 such that Km = 0.25. The

resulting transient response is slow and the PFC model output is much higher than the

actual process output. The controller consistently underestimates the input increments

required to effect changes in the controlled variable. The opposite effect is seen in Figure

8.27(b) where Km = 0.06. Here, the PFC model gain Km is lower than the process gain

Kp leading to a fast, overshooting response as the predictive controller overestimates the

input increments required to effect changes in the controlled variable. The PFC model

output is smaller than the real process output.

(a) (b)

Figure 8.27: Effect of PFC model mismatch on the electron density transient response.
In (a), Km = 0.25 and in (b), Km = 0.06. The actual value of Kp is approximately
0.11. Because the system gain Kp changes with the ground impedance, the size of the
error between the model output and the controlled variable (virtual measurement of

ne) is affected by changes in the ground impedance value.

Model mismatch due to pressure changes

Figure 8.20 depicts the electron density recorded in the chamber for a range of power and

ground impedances. The electron density system gain can be reasonably well approxi-

mated as a constant for each pressure individually and this fact allows a PFC controller

with a constant internal model to be implemented for a fixed pressure in in Section

8.7. However, such a system may fail or perform poorly when changes are introduced
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Chamber power (W) Ground Impedance (Ω) Pressure (mTorr)

Lowest value 200 0 200
Highest Value 600 22 300

Table 8.5: Design of experiment inputs for VM model with varying pressure.

during system operation that cause substantial changes in the system gain, for example,

changes in the chamber pressure.

The operating range of the VM model developed in Section 8.5 needs to be expanded

to produce accurate estimates of electron density over a range of pressures. A new

experiment is performed in which the chamber power, ground impedance, and pressure

are varied over the ranges shown in Table 8.5. No direct measurement of pressure is

available to the VM system in the particular equipment used during these experiments,

but the VM model is capable of estimating the electron density over the explored pressure

range using the PIM measurements alone. However, as a result of a greater reliance on

the exact values of the PIM measurements, the electron density estimates become more

sensitive to noise on the PIM signals, resulting in noisier electron estimates than those

seen in Section 8.7.

The effect of chamber pressure variations on the PFC controller performance using a

time-invariant PFC internal model is demonstrated in Figure 8.28. In the experimental

data shown, the system conditions are changed at each “system change” point to the

settings marked on the figure. The PFC internal model error, and hence the electron

density time response, changes depending on the system conditions.

While gain scheduling could be implemented to change the PFC internal model to

suit the particular operating regime in use at one particular time, a more elegant solution

is to update the model parameters in real time in response to the system changes. This

solution is explored in Section 8.8.2.

8.8.2 Recursive least squares

Due to the relatively simple form of the system model in use (see Section 8.7.1), the

model update can be constructed as a linear regression problem. At each sample k, the

system electron density estimate n̂e is given by

n̂e(k) = Kmp(k − d) + cm (8.26)
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Figure 8.28: Effect of pressure disturbances on PFC controller performance. The
pressure and ground impedance of the chamber are adjusted at each “system change”
in the diagram. Pressure is adjusted from 200–225–250 mTorr. The PFC model gain

Km is fixed at 0.1104, which best suits the 250 mTorr operating space.

where Km is the modelled process gain, p is the power applied to the chamber, d is

the system delay in sample periods, and cm is an offset term. The electron density for

samples k to k +N can be written as


n̂e(k)

n̂e(k + 1)
...

n̂e(k +N)

 =


p(k − d) 1

p(k − d+ 1) 1
...

...

p(k − d+N) 1


[
Km

cm

]
. (8.27)

Equation (8.27) is of the form y = Xβ which can be solved using least squares

regression techniques, as described in Section 3.1. However, rather than storing a fixed

window of inputs and outputs and recalculating new values for Km and cm at each

sample, recursive least squares (RLS) can be used to recursively update the [Kmcm]T

vector using each value of p(k) and n̂e(k) as they arise. The full derivation of the RLS

algorithm is provided in Appendix C but the algorithm can be summarised [298], at

sample k + 1, by the following steps:

1. Collect y(k + 1) and form ~x(k + 1) from new data collected during the sample,

where ~x(k + 1) is a row vector of variable measurements forming a new row of X.
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For the plasma system, ~x(k + 1) is simply the applied power from one delay time

ago (p(k+1−d)) and a unit value, and y(k+1), the process output measurement,

is the virtual measurement of the electron density at sample k + 1.

2. Calculate the current error e(k + 1) using

e(k + 1) = y(k + 1)− ~x(k + 1)β̂(k), (8.28)

where β̂(k) are the model parameters from sample k, for this system a vector made

up of Km and cm.

3. Calculate the covariance matrix P(k + 1) using

P(k + 1) = P(k)

[
I − ~x(k + 1)T~x(k + 1)P(k)

λRLS + ~x(k + 1)P(k)~x(k + 1)T
,

]
, (8.29)

where I is the identity matrix and λRLS is the RLS forgetting factor.

4. Update the model parameters, β̂(k + 1) using

β̂(k + 1) = β̂(k) + P(k + 1)~x(k + 1)T e(k + 1). (8.30)

5. Return to step 1.

8.8.3 Application to PFC

RLS is included in the PFC control algorithm as shown in Figure 8.29.

The results for the PFC controller using the adaptive model are demonstrated in

Figure 8.30. The same system excitations as for Figure 8.28 are used during the test.

The PFC model output realigns to the VM estimation of the process output shortly after

each system change, and with the PFC model correctly adapted, the PFC controller can

control the process in line with the requested dynamics such that τr = 0.3 s.

A forgetting factor of λ = 0.995 is used in the RLS algorithm to avoid rapid model

updates in response to the noisy VM estimates of electron density. The evolution of the

model parameters is shown in Figure 8.31. After each system change in the experiment,

the RLS algorithm requires several different electron density set points before the model

parameters settle on the correct values. The model estimates are inaccurate during these

settling periods, and hence the system transient responses are not as desired. However,

once appropriate values for the model parameters are ascertained, the system response

is more accurate than the response achieved using a constant PFC internal model. To
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Figure 8.29: Recursive least squares (RLS) used to update PFC model parameters.

prevent unexpected or perhaps harmful behaviour in a production system, the calculated

model parameters from the RLS algorithm would not be used in the online PFC internal

model until they have converged.

Figure 8.30: PFC with pressure changes using an internal model adapted with RLS.
Once the model parameters are updated to match the process after each system change,

the requested transient responses are observed in the controlled variable.
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Figure 8.31: Evolution of model coefficients using RLS. The model is represented as
a linear equation ne = Kmp + cm. Note that after every system change, some time is
required before the coefficient values settle. During these transition periods, the model

estimates are inaccurate.

8.9 Discussion

In this chapter, real-time control of plasma electron density using virtual measurements

has been achieved in a production plasma etch chamber. Proportional-integral control

is found to be unsatisfactory for control of electron density because of its inability to

cater for the measurement delay introduced by the PIM signals used in the VM system.

Predictive functional control (PFC) is chosen as the model predictive control (MPC)

variant to implement the control. A first-order PFC implementation allows relatively

fast set point tracking (settling times of approximately 1 second) without overshoot, ex-

plicitly deals with the time-delay introduced by the PIM-based VM system, and displays

excellent disturbance rejection properties. The control system is expanded to operate

across a larger operating range by adapting the PFC internal model parameters using

recursive least squares (RLS). Closed-loop response times of less than one second can

be reliably achieved over the full operating range using the adaptive system. In a pro-

duction setting, the operating range is likely to be much smaller because process recipes

typically operate around relatively fixed operating points.

Although the experiments in this chapter were completed using a non-etchant gas,

helium, similar control performance is feasible using etchant gases with product wafers in

the etch chamber, provided the control is implemented during the steady-state etching of

wafer layers. More complex VM models would be required for control spanning multiple
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etch layers. Such control will pave the way for more reliable etch performance, since

the controller can compensate for disturbances introduced to the ground impedance as

a result of component replacement or conditioning of the chamber in the production

environment.

The results of this chapter have been accepted for publication in the International

Federation of Advanced Control (IFAC) World congress in August of 2011.
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Chapter 9

Conclusions and future directions

In this chapter, the main conclusions from the research in this thesis are provided in

Section 9.1, and details on potential future directions for work are provided in Section

9.2.

9.1 Overall conclusions

From the literature review completed in Chapter 4, it is clear that accurate VM modelling

of plasma etch processes is still a considerable challenge for industrial practitioners. VM

research concentrates on many different processes and uses numerous techniques with

no clearly advantageous approach emerging. While numerous studies exist that use data

from designed experiments (such as factorial experiments) to develop virtual metrology

(VM) models, research based on the analysis of production data sets is less common.

Designed experiment data are useful for VM model development if the process varia-

tions introduced during the experiments are representative of the variations encountered

during process operation. Examples of such situations are seen in the development of

VM models for the VASIMR engine in Chapter 5, and, by a lesser amount, for the

experimental electron density control system described in Chapter 8.

However, input variable variations introduced during designed experiments are typi-

cally not representative of process variations observed during production etch processes.

During production, process input set points typically remain constant, and process vari-

ation is primarily caused by mechanisms such as chamber conditioning and preventative

maintenance (PM) events. Such variations are not be captured in typical designed ex-

periments and the measured dynamics and interrelationships between variables may not
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be representative of the production environment. Also, factorial experiments for man-

ufacturing processes can often be prohibitively expensive to carry out due to the high

value nature of product wafers that may need to be sacrificed during experimentation.

To address this issue, Chapters 6 and 7 focussed on the development of wafer-level

VM models for estimation of plasma etch rate using data collected from a plasma etch

process during production. An extensive account of different VM approaches is provided

for the benefit of industrial practitioners aiming to implement VM for etch processes.

The principal difficulty of using production data during the creation of VM models

for time varying processes such as plasma etch is that VM estimates can be required for

parts of the system operating space that have not been included in the model training

data. As the system varies, new areas of the operating space are encountered, potentially

rendering previously designed models obsolete. In general, estimation of process output

variables for wafers dissimilar to those in the VM model training data are inaccurate,

as shown by the cluster modelling results of Chapter 7. Hence, metrics and techniques

such as the confidence intervals from Gaussian process regression (GPR) models, the

Q and T 2 statistics, Mahalanhobis distance, or clustering algorithms should be used to

indicate when estimation from new regions of the system operating space are required,

and care should be taken in such situations. When these metrics suggest, models may

need to be updated or new models may be required to address the gap in operating space

coverage, and the metrics could also be used to effect changes in the metrology rate as

appropriate (dynamic sampling) to update or create the VM models. Estimation results

from an interleaved data set are used in Chapter 6 as a metric for the potential accuracy

of a VM system using a comprehensive data logging philosophy and an extensive data

set. Increases in etch rate estimation accuracy are observed for the interleaved scheme.

A broad range of variable selection, data reduction, modelling, and data division

schemes are examined throughout Chapters 6 and 7 for VM model development. Through-

out the analysis, the maximum accuracy achieved by the VM models is approximately

1.14% MAPE, using a windowed GPR scheme. The accuracy levels achieved by other

model types does not vary greatly from this level. The consistency of the results from

different techniques lends confidence to the conclusion that the achieved accuracy rep-

resents the lower limit of achievable estimation accuracy for the etch rate of the process

studied using data at the available frequency of metrology (approximately 4 % metrology

rate). It is highly unlikely that further modelling techniques will substantially improve

upon the accuracy reported. A MAPE of 1.14% is almost fully attributable to the

cumulative effects of variations in incoming product material, variations in post-etch

processes, and errors in measurement of trench depth.

294



Conclusions

For the process under study, the accuracy achieved is sufficient to successfully mon-

itor whether the etch process is operating within specifications or not. The windowed-

GPR modelling scheme is also accurate and fast enough to allow implementation of a

wafer-to-wafer control scheme for etch rate. Currently, the time for the main etch step is

varied on a manual basis, but the frequency and promptness of the manual updates are

limited by a low etch depth measurement frequency and a metrology delay of the order

of days. While small, high-frequency variations in etch rate are not accurately estimated

by the VM models, the overall average etch rate is approximated accurately, and control

of this average etch rate is achievable using the VM estimates with a wafer-to-wafer

control scheme. Implementation of such a scheme would represent a considerable im-

provement upon the current standard practice for this process, and can be implemented

without the addition of further sensors on the tools through the use of etch process (EP)

data only.

Before the VM models are used for APC, further analysis with fully measured lots

is required to ensure that models cater for intra-lot signal variations, for example, first

wafer effects. However, apart from first-wafer effects, the etch process studied is known

to operate relatively uniformly, and hence the VM scheme developed is conservatively

conjectured to be capable of generating meaningful estimates for 70% of the wafers

processed. From a manufacturing perspective, estimates for this proportion of processed

wafer would represent a vast improvement on the existing infrastructure and would form

a useful system for excursion detection and process monitoring before run-to-run control

is considered.

With regard to the modelling techniques examined in this thesis, GPR modelling

represents an advantageous new modelling technique for the semiconductor industry.

With relatively few exceptions, GPR models perform consistently better for etch rate

estimation than all other modelling techniques, including artificial neural network (ANN)

models, the most common model type found in the semiconductor literature. This thesis

documents the first application of GPR VM models to a semiconductor etch process.

GPR models come with the additional advantage over ANN models of easily calculable

confidence limits on each estimate, which are useful to gauge VM estimate reliability.

The GPR models also perform relatively well when limited amounts of training data are

available, which is often the case when data sets are disaggregated for local modelling.

The confidence limits are found to be accurate for the data examined in Chapter 7.

Models based on principal component analysis (PCA) yield consistently poor results.

Least angled regression (LARS) models prove to provide more accurate results in general

than the more popular stepwise regression models, with the exception of the windowed

modelling investigations.
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The local modelling results demonstrate the advantage of incorporating process

knowledge during VM development to account for known process dynamics. Chapter

7 examines three modelling schemes that manipulate the input data in different ways

to cater for the etch process dynamics: regional PM cycle modelling, clustered mod-

elling, and windowed modelling. Regional PM cycle models were not found to aid VM

estimates, demonstrating that inter-PM variation is greater than intra-PM variation.

However, clustered models exhibit potential gains in etch rate estimation accuracy over

comparable global models, and windowed models are proven to operate most effectively

in the research. Cluster models were born from the knowledge that the etch process op-

erates in distinct modes, with the potential that local models for each mode could prove

more accurate than a single global model. Windowed modelling is used to maintain

model currency in the knowledge that the etch process is time varying. The windowed

and cluster models are similar in that they both provide local focus for etch rate esti-

mates, but differ in that windowed modelling schemes discard historical data after every

window movement, while cluster models retain all historical data. The weighted-window

modelling scheme described in Chapter 7 incorporates knowledge of the chamber main-

tenance history to increase etch rate estimation accuracy for PLS models. However, for

the data set studied, windowed-GPR models are found to be the most accurate method

for estimation of etch rate over many thousands of wafers, estimating the actual etch

rate of 493 unseen test wafers with an R2 of 0.75 and MAPE of 1.14 %.

Assuming that no other sensors are available, the stronger the relationship between

the VM model input variables and the process variables of interest, the more likely

the particular VM implementation will be successful. In Chapter 5, optical emission

spectroscopy (OES) is used to perform VM for engine component temperatures and in

Chapter 8, plasma impedance monitor (PIM) variables are used to drive VM models for

plasma electron density. The choice of VM model input variables, in both cases, was

driven by prior knowledge of the systems being modelled. For the plasma etch data set,

ultimately the relationship between the VM model input variables and etch rate was

found to be relatively weak. In the case of the results presented in this thesis, the use

of VM models with the etch process (EP) data set alone represents the minimum of

investment from the manufacturer; all of the measurements used are already logged by

each tool, and no further sensors are required. However, while there were no consistent

differences in model accuracy between those models using PIM data and etch process

(EP) variables, it is important to note that the models using the PIM sensor were the

only models to follow some particular etch rate variations caused by PM operations

during global modelling.

Although the data set used during etch rate modelling was restrictive in terms of
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quantity and frequency of samples, based on the results of Chapters 6 and 7, some

conjectures can be made on the potential effects of obtaining more data for VM model

creation.

• Global model accuracy is likely to increase somewhat as more of the operating

space is captured by larger training sets. However, global models tend to become

overly general with large amounts of data, and it is likely that very large global

models will lose local accuracy as the number of training samples increases greatly.

• Cluster models are expected to become more accurate as knowledge of new operat-

ing spaces allows new cluster models to be created and individual clusters become

better defined. It is conjectured that a finite number of clusters will exist as the

amount of data collected increases, as depicted in Figure 9.1. Hence, with a finite

number of cluster models, local model accuracy can be achieved across the whole

operating space.

• Windowed models, for a given window size, are unaffected by the number of train-

ing samples available in total, since old information, beyond the window size, is

disregarded every time the window moves forward.

• ANN-based model accuracy is expected to increase as more samples are available

to learn functional relationships, overcoming the difficulties of limited data sets.

While this accuracy increase applies to global models, there is still a danger of

models becoming overly general with additional data. ANN-based cluster models

should also become more accurate, but there is the possibility of some clusters

remaining sparsely populated and hindering ANN model accuracy.

• GPR models will perform equally well with large data sets as small data sets.

However, the complexities of estimation calculations will increase since each esti-

mate requires the inversion of a covariance matrix, the size of which is dictated by

the number of training samples available. The operation of the GPR models will

become a problem for very large data sets (>∼ 10000 training points). In GPR

modelling, essentially the training data forms the model, and so training data

spread across larger regions of the operating space will aid estimation in these

areas.

It is worthy of note that more modern etch processes tend to have higher measure-

ment frequencies, and it can be reasonable assumed that the VM results will be more

accurate for such processes (for example see [222]), since more measurements from each

operating space are recorded before disturbances such as PM events occur.
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Figure 9.1: Conjectured limit of clusters existing in data.

In Chapter 8, a real-time VM and control system is developed for control of electron

density in a production chamber. Over the operating ranges investigated, the response

of the plasma electron density with respect to power is shown to be relatively linear,

and closed-loop model predictive control with response times of less than one second,

no overshoot, and good disturbance rejection properties is achieved using first-order

predictive functional control (PFC). PIM variables are demonstrated to be suitable VM

model input variables for estimation of electron density. Changes in the impedance

of the ground path are used to simulate variations that are conjectured to be similar

to PM event disturbances, and the VM system is designed to operate in the presence

of such variations. The ground path impedance disturbances drive electron density

variations and the control scheme is demonstrated to be capable of negating this effect.

The implementation of a model update scheme for the PFC internal model allows the

control scheme to operate effectively with changes in chamber pressure, and potentially,

other variables that impact the relationship between the PIM variables and the plasma

electron density.

The success of the non-invasive VM and real-time control scheme for electron density

suggests that similar systems can be constructed for VM and control of other plasma

variables. Example of such variables include ion densities or species concentrations, pro-

vided that measurements of such variables along with measurements of related ancillary

variables can be attained for the purpose of VM model building. Such research paves

the way for development of a multi-variable real-time control system such that process

recipes can be specified in terms of plasma variables rather than process chamber in-

put set points, without the requirement for expensive chamber alterations. From an
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industrial perspective, non-invasive real-time control systems that can negate the effect

of PM disturbances on plasma variables would be beneficial in terms of tool-matching

applications and to achieve tightly controlled etch output variables.

As an overall concluding comment, although optimal VM implementation will never

be achievable for plasma etch processes through the use of a standardised procedure,

through an understanding of the limitations of the techniques employed along with

the peculiarities of the etch process, the accuracy floor for the data available can be

attained. Whether this accuracy is sufficient depends on the application. It is the opinion

of the author that VM, given adequate investment of effort, represents an affordable

technology for semiconductor manufacturers to enable wafer-to-wafer or real-time APC

for many etch processes in the near future, potentially increasing fab-wide yields and

saving millions of euro worldwide.

9.2 Future work

The research contained within this thesis highlights several areas for further research.

This section examines some of the research topics for future consideration.

9.2.1 VASIMR state estimation

The temperature estimation system developed for the VASIMR engine in Chapter 5

can be expanded to operate in multiple helicon modes and across a larger operating

regime than investigated through the use of local linear models and a mode detection

algorithm. A potential improvement to the state estimation scheme would be the use

of a Kalman filter in place of the the Luenberger observer used in this thesis. The

Kalman filter algorithm may provide more accurate estimates of the engine temperatures

because it takes the measurement and process noise variances into account during the

determination of the estimator gain. However, estimates of the process and measurement

noise for the VASIMR engine system are challenging to attain.

Ultimately, given access to the prototype system, the aim of the VM scheme is to

provide feedback for an active cooling system to regulate the VASIMR engine temper-

ature in final flight-ready designs. Flight-ready prototypes will be capable of running

at 200 kW power, split between the helicon and ion-cyclotron resonance antennae. At

such high powers, the engine heating will be more intensive than that seen in the ex-

periments in Chapter 5, and active cooling systems may be required to maintain engine
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temperatures within safe limits. Feedback mechanisms to implement closed loop con-

trol of the engine temperatures could use virtual measurements similar to the system

developed in Chapter 5.

9.2.2 Plasma etch virtual metrology

The accuracy of the VM models examined in this thesis is limited by the available sam-

ples for modelling, and the relevance of the measurements taken from the process. Some

further research should be completed to quantify the measurement frequency required to

achieve the VM accuracy floor (the best accuracy possible), and to investigate the sen-

sitivity of the VM estimation accuracy to the level of metrology available. For the data

set explored in Chapters 6 and 7, etch rate metrology is available for approximately 4

% of wafers. An interesting expansion of the current results would be to examine the

effect that reducing the number of metrology points would have on VM estimation accu-

racy. The frequency of metrology could be optimised to achieve the best VM estimation

accuracy while minimising the risks of wafer scrap and maximising factory throughput.

A hypothetical depiction of this effect is depicted in Figure 9.2 where the slope of the

VM accuracy floor can be used as a metric for the sensitivity of the VM error to the

metrology frequency. Such work was not completed in this thesis due to the restrictions

of the data set available, a highly sampled data set would be required to comprehensively

examine subsampling effects.

Figure 9.2: Hypothetical VM accuracy floor in relation to metrology frequency. An
optimal measurement frequency can hypothetically be found that maximises factory
throughput and VM accuracy while minimising metrology expenses and risk of wafer

scrap.

300



Conclusions

Further research can be completed to compare further VM model input variables by

collecting a data set containing concurrent measurements of EP, PIM, and OES data

for the etch process. For a comprehensive investigation, data is needed from similar or

greater amounts of wafers and PM cycles than that available in the data set used in this

thesis. More modern processes compared to the one studied in this thesis are typically

more frequently measured for etch rate, and hence, data sets from such processes are

likely to be more suitable for VM investigations, assuming that ancillary variables from

PIM and OES sensors can be obtained.

The modal behaviour of the plasma etch system is revealed during the cluster mod-

elling results of Chapter 7. This modal behaviour has been observed in other research

on etch processes [58, 229]. Further work is required in this area using larger data sets

to investigate the potential applications and advantages of using specialised clustered

models for etch rate VM. While it is conjectured in this thesis that a finite number of

clustered operating points will appear as extensive process data is collected, this fact is

yet to be confirmed through experiment.

The maintenance dependent weighted-window scheme developed in Chapter 7 im-

proved the accuracy of the windowed partial least squares (PLS) models. Further re-

search can be completed in the extension of the weighted scheme to the windowed GPR

models examined. Such weighting could be implemented by adapting the marginal log-

likelihood equation that is minimised during the optimisation of the covariance function

hyperparameters. The implementation of weighted GPR models and the application

of the weighted and non-weighted windowed modelling schemes to different industrial

plasma etch data sets are areas of current research.

9.2.3 Real-time control of electron density

The real-time VM and electron density control scheme implemented in Chapter 8 yielded

promising results that has spurred on further research into the area of real-time process

control for plasma etch.

The next step in this research is the expansion of the VM models to allow for elec-

tron density estimation while wafers are being etched. The relationship between plasma

electron density and polysilicon etch rate in SF6 plasmas is currently being examined

and characterised by a research group which includes the author, working in close col-

laboration with a semiconductor manufacturing company. The control system is being

tested to examine whether regulation of the electron density stabilises the polysilicon

etch rate in the presence of ground impedance disturbances. Ultimately, the relationship
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between the plasma variables and the etch rate is to be characterised so that recipes

can be specified in terms of etch variables. However, such abstraction requires extensive

experimentation and analysis of the different interacting processes occurring during the

etch of each wafer.

Further improvements to the control architecture include the inclusion of pressure

as an explicit VM model input variable to allow more reliable estimation of the electron

density variations over a range of chamber pressures (a pressure measurement was not

available at the time of experimentation in this thesis). A Kalman filter could also be

implemented to improve the current VM estimates across multiple chamber pressures,

as the current VM estimates are relatively noisy. Spectral data should also be examined

as potential VM model input variables to increase accuracy.

Other future work lies in the improvement of the adaptive internal model for the

PFC controller. The PFC control performance can be unpredictable, in terms of settling

time and overshoot, directly after changes in operating set point while the RLS algo-

rithm settles on new values for the PFC internal model. To ensure predictable control

performance and prevent potentially dangerous system operation, the internal model

parameters could be scheduled from a lookup table, or else kept constant, in the interim

period while the RLS algorithm converges. After convergence of the RLS parameter

estimates, the RLS estimates can be used for the control, and the lookup table updated,

if required, to reflect the newly calculated model parameter values.

Taking the results from Chapters 6 and 7 into account, it is likely that the VM models

used for estimation of electron density will require periodic refreshing to maintain their

currency. Techniques such as the clustered modelling may be employed if the system is

found to be modal and the use of a GPR model for VM of electron density may be a

useful addition because the confidence intervals on the VM estimates could be used as a

metric to weight the control actions taken. Model refreshing can be achieved by collecting

information using a retractable microwave hairpin probe during the etch of patterned

test wafers that are routinely used to qualify chambers after PM operations. Some

research is required to examine the possibilities of rapid characterisation of the chamber

operating space during the etch of one patterned wafer to reduce the cost of model

refreshing. Although the installation of a retractable probe on production chambers

may incur substantial costs originally, the potential future gains may far outweigh this

cost.
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EP Data Variables

This appendix details the variables that are included in the EP data set for each of the

five etch process steps.
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Step 1

Variable Name Description

MEAN-POWER Power delivered to chamber *
STD-DEV-TV ANGLE Std. dev. Throttle valve angle
MEAN-PHASE Phase between voltage and current *
MEAN-IMPEDENCE Plasma Impedance (V/I) *
MEAN-VOLTAGE Voltage applied (V) *
MEAN-ENDPOINT A Monochromator signal A
MEAN-GAS FLOW5 MFC5 flow
STD-DEV-GAS FLOW1 Std. dev. MFC1 flow
STD-DEV-GAS FLOW5 Std. dev. MFC5 flow
STD-DEV-RF FORWARD GEN Std. dev. RF power generated
STD-DEV-RF REFLECTED Std. dev. reflected RF power
STD-DEV-CHAMBER PRESS Std. dev. chamber pressure
MEAN-GAS FLOW1 Mean MFC1 flow
MEAN-RF FORWARD GEN Mean RF power generated
MEAN-UP ELECT TEMP Mean upper electrode temperature
MEAN-TV ANGLE Throttle valve angle
MEAN-RF MATCH 1 TUNE Matchbox tune inductor
MEAN-RF MATCH 1 DC BIAS Induced DC bias on wafer
MEAN-RF LOAD MATCH PH Phase between pre and post match RF waveforms
MEAN-RF LOAD COIL POS Matchbox load coil position
MEAN-RF LINE IMP RF line impedance
MEAN-LOW ELECT TEMP Lower electrode temperature
MEAN-GAP Gap distance between electrodes
MEAN-CHAMBER PRESS Chamber pressure
MEAN-RF REFLECTED RF power reflected from chamber

Table A.1: Etch process variables recorded during Step 1 of the trench etch process.
Mean value of time series variables are taken over the duration of the etch step. Stan-
dard deviation values are also recorded where noted. * denotes measurements derived

from PIM sensor.

304



Appendix A. EP Data Variables

Step 2

Variable Name Description

MEAN-POWER Power delivered to chamber *
STD-DEV-TV ANGLE Std. dev. Throttle valve angle
MEAN-CHAMBER PRESS Chamber pressure
MEAN-GAP Gap distance between electrodes (8cm)
MEAN-LOW ELECT TEMP Lower electrode temperature
MEAN-RF LINE IMP RF line impedance
MEAN-RF LOAD COIL POS Matchbox load coil position
MEAN-RF LOAD MATCH PH Phase between pre and post match RF waveforms
MEAN-RF MATCH 1 TUNE Matchbox tune inductor
MEAN-RF REFLECTED RF power reflected from chamber
MEAN-UP ELECT TEMP Mean upper electrode temperature
MEAN-TV ANGLE Throttle valve angle
MEAN-GAS FLOW4 MFC4 flow
MEAN-GAS FLOW6 MFC6 flow
MEAN-GAS FLOW1 MFC1 flow
MEAN-RF FORWARD GEN Mean RF power generated
MEAN-RF MATCH 1 DC BIAS Induced DC bias on wafer
STD-DEV-GAS FLOW4 Std. dev. MFC4 flow
STD-DEV-GAS FLOW6 Std. dev. MFC6 flow
STD-DEV-GAS FLOW1 Std. dev. MFC1 flow
STD-DEV-CHAMBER PRESS Std. dev. chamber pressure
STD-DEV-RF FORWARD GEN Std. dev. RF power generated
STD-DEV-RF REFLECTED Std. dev. reflected RF power
MEAN-VOLTAGE Voltage applied (V) *
MEAN-PHASE Phase between voltage and current *
MEAN-IMPEDANCE Plasma Impedance (V/I) *

Table A.2: Etch process variables recorded during Step 2 of the trench etch pro-
cess. Mean values of time series variables are taken over the duration of the etch step.
Standard deviation values are also recorded where noted. This step is controlled using
an endpoint signal and the length of the step is recorded in the step 3 parameters. *

denotes measurements derived from PIM sensor.
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Step 3

Variable Name Description

MEAN-ENDPT STEP TIME Endpoint time of Step 2
MEAN-POWER Power delivered to chamber *
STD-DEV-TV ANGLE Std. dev. Throttle valve angle
MEAN-CHAMBER PRESS Chamber pressure
MEAN-GAP Gap distance between electrodes
MEAN-LOW ELECT TEMP Lower electrode temperature
MEAN-RF LINE IMP RF line impedance
MEAN-RF LOAD COIL POS Matchbox load coil position
MEAN-RF LOAD MATCH PH Phase between pre and post match RF waveforms
MEAN-RF MATCH 1 TUNE Matchbox tune inductor
MEAN-RF REFLECTED RF power reflected from chamber
MEAN-UP ELECT TEMP Mean upper electrode temperature
MEAN-TV ANGLE Throttle valve angle
MEAN-GAS FLOW4 MFC4 flow
MEAN-GAS FLOW6 MFC6 flow
MEAN-GAS FLOW1 MFC1 flow
MEAN-RF FORWARD GEN Mean RF power generated
MEAN-RF MATCH 1 DC BIAS Induced DC bias on wafer
STD-DEV-GAS FLOW4 Std. dev. MFC4 flow
STD-DEV-GAS FLOW6 Std. dev. MFC6 flow
STD-DEV-GAS FLOW1 Std. dev. MFC1 flow
STD-DEV-CHAMBER PRESS Std. dev. chamber pressure
STD-DEV-RF FORWARD GEN Std. dev. RF power generated
STD-DEV-RF REFLECTED Std. dev. reflected RF power
MEAN-VOLTAGE Voltage applied (V) *
MEAN-PHASE Phase between voltage and current *
MEAN-IMPEDANCE Plasma Impedance (V/I) *

Table A.3: Etch process variables recorded during Step 3 of the trench etch process.
Standard deviation values are also recorded where noted. * denotes measurements

derived from PIM sensor.
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Step 4

Variable Name Description

MEAN-POWER Power delivered to chamber *
RANGE-ENDPOINT A Range of monochromator signal
STD-DEV-TV ANGLE Std. dev. Throttle valve angle
MEAN-PHASE Phase between voltage and current *
MEAN-IMPEDANCE Plasma Impedance (V/I) *
MEAN-VOLTAGE Voltage applied (V) *
MEAN-ENDPOINT A Monochromator signal A
MEAN-GAS FLOW2 MFC2 flow
MEAN-GAS FLOW7 MFC7 flow
MEAN-GAS FLOW6 MFC6 flow
MEAN-RF FORWARD GEN Mean RF power generated
MEAN-RF MATCH 1 DC BIAS Induced DC bias on wafer
STD-DEV-GAS FLOW2 Std. dev. MFC2 flow
STD-DEV-GAS FLOW7 Std. dev. MFC7 flow
STD-DEV-CHAMBER PRESS Std. dev. Chamber pressure
STD-DEV-RF FORWARD GEN Std. dev. RF power generated
STD-DEV-RF REFLECTED Std. dev. reflected RF power
STD-DEV-GAS FLOW6 Std. dev. MFC6 flow
MEAN-CHAMBER PRESS Chamber pressure
MEAN-GAP Gap distance between electrodes
MEAN-LOW ELECT TEMP Lower electrode temperature
MEAN-RF LINE IMP RF line impedance
MEAN-RF LOAD COIL POS Matchbox load coil position
MEAN-RF LOAD MATCH PH Phase between pre and post match RF waveforms
MEAN-RF MATCH 1 TUNE Matchbox tune inductor
MEAN-RF REFLECTED RF power reflected from chamber
MEAN-TV ANGLE Throttle valve angle
MEAN-UP ELECT TEMP Upper electrode temperature

Table A.4: Etch process variables recorded during Step 4 of the trench etch process.
Step 4 is the main trench etch step of the process. This step has the greatest influence

on the overall trench depth. * denotes measurements derived from PIM sensor.
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Step 5

Variable Name Description

MEAN-POWER Power delivered to chamber *
RANGE-ENDPOINT A Range of monochromator signal
MEAN-CHAMBER PRESS Chamber pressure
MEAN-GAP Gap distance between electrodes (8cm)
MEAN-LOW ELECT TEMP Lower electrode temperature
MEAN-UP ELECT TEMP Upper electrode temperature
MEAN-TV ANGLE Throttle valve angle
MEAN-RF REFLECTED RF power reflected from chamber
MEAN-RF MATCH 1 TUNE Matchbox tune inductor
MEAN-RF MATCH 1 DC BIAS Induced DC bias on wafer
MEAN-RF LOAD MATCH PH Phase between pre and post match RF waveforms
MEAN-RF LOAD COIL POS Matchbox load coil position
MEAN-RF LINE IMP RF line impedance
STD-DEV-GAS FLOW1 Std. dev. MFC1 flow
STD-DEV-CHAMBER PRESS Std. dev. Chamber pressure
STD-DEV-RF FORWARD GEN Std. dev. RF power generated
STD-DEV-RF REFLECTED Std. dev. Of reflected RF power
STD-DEV-GAS FLOW7 Std. dev. MFC7 flow
MEAN-GAS FLOW1 MFC1 flow
MEAN-GAS FLOW7 MFC7 flow
MEAN-RF FORWARD GEN Mean RF power generated
MEAN-VOLTAGE Voltage applied (V) *
MEAN-PHASE Phase between voltage and current *
MEAN-IMPEDANCE Plasma Impedance (V/I) *
STD-DEV-TV ANGLE Std. dev. Throttle valve angle

Table A.5: Etch process variables recorded during Step 5 of the trench etch process.
Step 5 is the final step of the process where the bottom of the etched trenches are given

the desired profiles. * denotes measurements derived from PIM sensor.
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Variables removed from EP data

This appendix details the variables that are removed from the EP data set and not used

during the development of the virtual metrology models for etch rate.

Removed Variables

Step 3 4-STD-DEV-RF FORWARD GEN
3-STD-DEV-TV ANGLE 4-STD-DEV-RF REFLECTED
3-MEAN-GAP 4-STD-DEV-HBr FLOW6
3-MEAN-RF REFLECTED 4-MEAN-CHAMBER PRESS
3-MEAN-TV ANGLE 4-MEAN-GAP
3-MEAN-C2F6 FLOW4 4-MEAN-RF REFLECTED
3-MEAN-HBr FLOW6 4-MEAN-TV ANGLE
3-MEAN-He FLOW1 Step 5
3-STD-DEV-C2F6 FLOW4 5-RANGE-ENDPOINT A
3-STD-DEV-HBr FLOW6 5-MEAN-CHAMBER PRESS
3-STD-DEV-He FLOW1 5-MEAN-GAP
3-STD-DEV-CHAMBER PRESS 5-MEAN-TV ANGLE
3-STD-DEV-RF FORWARD GEN 5-MEAN-RF REFLECTED
3-STD-DEV-RF REFLECTED 5-STD-DEV-He FLOW1

Step 4 5-STD-DEV-CHAMBER PRESS
4-RANGE-ENDPOINT A 5-STD-DEV-RF FORWARD GEN
4-STD-DEV-TV ANGLE 5-STD-DEV-RF REFLECTED
4-MEAN-Ar FLOW2 5-STD-DEV-Cl2 FLOW7
4-MEAN-Cl2 FLOW7 5-MEAN-He FLOW1
4-MEAN-HBr FLOW6 5-MEAN-Cl2 FLOW7
4-STD-DEV-Ar FLOW2 5-STD-DEV-TV ANGLE
4-STD-DEV-Cl2 FLOW7
4-STD-DEV-CHAMBER PRESS

Table B.1: Variables removed from analysis due to low variance or on suspect of
having no contribution to output modelling effort.
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Derivation of recursive least

squares

RLS Algorithm details

Recall that the solution for equations of the form y = Xβ are given by β̂ = (XTX)−1XTy,

where X ∈ Rn×p is a matrix of n samples of p variables, y ∈ Rn×1 is a vector of process

outputs, and β ∈ Rp×1 is a vector of model coefficients. Define X(k) and y(k) to be

X(k) =


~x1

~x2

...

~xk

 y(k) =


y1

y2
...

yk

 (C.1)

where ~xi represents the ith row of matrix X, and in this case that corresponds to

the row vector of variable measurements for sample i. yi represents the process output

measurement for sample i. Hence X(k) and y(k) represent all information collected

from samples 1 to k. The estimate for the process parameters at sample k is given by

β̂(k) =
[
X(k)TX(k)

]−1
X(k)Ty(k). (C.2)
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At time k+ 1 further information from the process is gathered, and the matrices are

increased in size to include the new information such that

X(k + 1) =


~x1

~x2

...

~xk+1

 y(k + 1) =


y1

y2
...

yk+1

 (C.3)

and

β̂(k + 1) =
[
X(k + 1)TX(k + 1)

]−1
X(k + 1)Ty(k + 1). (C.4)

We can express the terms on the right side of Equation (C.4) as

X(k + 1)TX(k + 1) =
[
X(k)T~xTk+1

] [ X(k)

~xk+1

]
= X(k)TX(k) + ~xTk+1~xk+1 (C.5)

X(k + 1)Ty(k + 1) =
[
X(k)T~xTk+1

] [ y(k)

yk+1

]
= X(k)Ty(k) + ~xTk+1y

T
k+1. (C.6)

Equations (C.5) and (C.6) allow Equation (C.4) to be updated at every sample. However,

a method to directly update the inverse of Equation (C.5) is required. Define

P(k) = [X(k)TX(k)]−1 (C.7)

B(k) = X(k)Ty(k), (C.8)

where P(k) ∈ Rp×p, and B(k) ∈ Rp×1, such that

β̂(k) = P(k)B(k), and (C.9)

β̂(k + 1) = P(k + 1)B(k + 1). (C.10)

Substituting the definitions for P(k) and B(k) into Equations (C.5) and (C.6) yields

P(k + 1) = P(k)−1 + ~xTk+1~xk+1 (C.11)

B(k + 1) = B(k) + ~xTk+1y
T
k+1. (C.12)

The matrix inversion lemma is used to find a direct update from P(k) to P(k + 1).

The matrix inversion lemma states that
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(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (C.13)

where A,B,C, and D are of the correct sizes (for example A ∈ Rn×n, B ∈ Rn×k,
C ∈ Rk×k, and D ∈ Rk×n). If we set A = P(k)−1, B = ~xTk+1, C = 1, and D = ~xk+1,

then a direct update for P(k + 1) is obtained:

P(k + 1) = P(k)

[
I −

~xTk+1~xk+1P(k)

1 + ~xk+1P(k)~xTk+1

]
. (C.14)

The only inversion in Equation (C.14) is that of a scalar value. Now, define the error

variable e(k) such that

e(k + 1) = yk+1 − ~xk+1β̂(k). (C.15)

Using the expression for yk+1 from Equation (C.15) in Equation (C.12) yields

B(k + 1) = B(k) + ~xTk+1~xk+1β̂(k) + ~xTk+1e(k + 1). (C.16)

From Equations (C.9) and (C.10), B(k) and B(k + 1) can be expressed as

B(k) = P(k)−1β̂(k) (C.17)

B(k + 1) = P(k + 1)−1β̂(k + 1). (C.18)

Substituting the expressions from Equations (C.17) and (C.18) into Equation (C.16)

yields the update for β̂(k + 1):

P(k + 1)−1β̂(k + 1) = P(k)−1β̂(k) + ~xTk+1~xk+1β̂(k) + ~xTk+1e(k + 1) (C.19)

P(k + 1)−1β̂(k + 1) = P(k + 1)−1β̂(k) + ~xTk+1e(k + 1) (C.20)

β̂(k + 1) = β̂(k) + P(k + 1)~xTk+1e(k + 1). (C.21)

Hence, the full RLS algorithm can be implemented in five steps at each sample point.

These are, at sample k + 1,
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1. Form ~xk+1 from new data collected during the sample.

2. Calculate the current error using Equation (C.15).

3. Calculate the covariance matrix P(k + 1) using Equation (C.14).

4. Update the model parameters, β̂(k + 1) using Equation (C.21).

5. Return to step 1.

A common adjustment to the RLS algorithm is the addition of a forgetting factor

0 ≤ λRLS ≤ 1 which prevents the elements of P becoming too small and thus improves

sensitivity of the algorithm. λRLS adjusts Equation C.14 such that

P(k + 1) = P(k)

[
I −

~xTk+1~xk+1P(k)

λRLS + ~xk+1P(k)~xTk+1

]
. (C.22)

The above derivation, along with further discussion on self-tuning and adaptive

systems, can be found in the work by Wellstead [298].
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